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Abstract
Objective: To investigate potential functional and structural large-scale network 
disturbances in untreated patients with generalized tonic–clonic seizures (GTCS) 
and the effects of antiseizure drugs.
Methods: In this study, 41 patients with GTCS, comprising 21 untreated patients 
and 20 patients who received antiseizure medications (ASMs), and 29 healthy 
controls were recruited to construct large-scale brain networks based on resting-
state functional magnetic resonance imaging and diffusion tensor imaging. 
Structural and functional connectivity and network-level weighted correlation 
probability (NWCP) were further investigated to identify network features that 
corresponded to response to ASMs.
Results: Untreated patients showed more extensive enhancement of functional 
and structural connections than controls. Specifically, we observed abnormally 
enhanced connections between the default mode network (DMN) and the frontal–
parietal network. In addition, treated patients showed similar functional connec-
tion strength to that of the control group. However, all patients exhibited similar 
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1  |   INTRODUCTION

Epilepsy is one of the most common chronic neurologic 
disorders1,2 and affects approximately 70 million people 
globally.3 Generalized tonic–clonic seizures (GTCS) is a 
type of epilepsy and accounts for 20%–55% of all epilep-
sies.4 GTCS is characterized by muscle contractions and 
sudden loss of consciousness,5,6 with generalized spike–
wave discharge.7,8

Moreover, in patients with GTCS, widespread abnor-
mal functional activity has been detected throughout the 
brain,9 and it has been suggested that both primary and 
high-order brain networks are involved.10,11 Most GTCSs 
can be effectively controlled by antiseizure medications 
(ASMs). However, approximately 20%–30% of patients 
fail to achieve remission from GTCSs.12 Therefore, un-
derstanding the pathophysiology of GTCSs and exploring 
the effects of ASMs on the brain is crucial to the develop-
ment of more effective treatments for patients with GTCS. 
Recently, our understanding of GTCSs has deepened 
owing to the application of noninvasive neuroimaging 
techniques, such as functional magnetic resonance im-
aging (fMRI) and diffusion tensor imaging (DTI), which 
explore different aspects,13–15 such as functional connec-
tivity and structural connectivity. However, several ques-
tions remain unsolved.

Accumulating evidence from multimodal brain studies 
has suggested that the topological organization of structural 
and functional brain networks is disrupted in patients with 
GTCS.10,16,17 For example, studies have reported disrup-
tion of the functional reorganization of the default mode 
network (DMN)17,18 and a relationship between abnormal 
structural network organization and the extent of hypoxia 
in brain regions serving vital functions.19 In addition, one 
study found that the small-world topology of patients with 
GTCS showed weaker connectivity in the functional and 

structural networks.20 The relationship between function 
and structure has also been a significant focus of studies 
on brain connectivity. A previous study demonstrated that 
function–structure coupling is altered in patients with gen-
eralized epilepsy.20 Although numerous studies have ex-
plored various aspects of brain states in GTCS patients,21–23 
the pathomechanism of the disease remains elusive be-
cause most of these studies did not group according to med-
ication status. Furthermore, the effect of medication status 
on functional and structural network organization and the 
coupling of these two networks have not yet been compre-
hensively analyzed.16 It remains unclear how ASMs affect 
brain networks in patients with GTCS, which is a crucial 
element in investigations of the potential pathomechanism 
of GTCS and therapy targets.

Recently, network-level weighted correlation prob-
ability (NWCP) has been proposed to analyze neuroim-
age data at the network level.24 Because of its potential 
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structural network alterations. Moreover, the NWCP value was lower for connec-
tions within the DMN and between the DMN and other networks in the untreated 
patients; receiving ASMs could reverse this pattern.
Significance: Our study identified alterations in structural and functional con-
nectivity in patients with GTCS. The influence of ASMs may be more noticeable 
within the functional network; moreover, abnormalities in both the functional 
and structural coupling state may be improved by ASM treatment. Therefore, the 
coupling state of structural and functional connectivity may be used as an indica-
tor of the efficacy of ASMs.
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Key Points

•	 The functional connectivity, among DMN, 
FPN, limbic, and their connections with other 
networks, were enhanced in untreated pa-
tients, while the increase was relieved in drug-
receiving patients.

•	 Both patient groups showed stable alterations 
of structural connection among DMN, FPN, 
and VN relative to healthy controls.

•	 The structural and functional coupling degree 
was decreased within DMN and between DMN 
with other networks, and drug-receiving could 
reverse the decrease.
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for achieving multimodal data fusion, we modified and 
adapted this method in this study. To investigate distur-
bances in the multimodal characteristics of brain net-
works in patients with GTCS and to uncover the potential 
treatment effects of ASMs on the brain, we acquired 
resting-state fMRI and DTI data from drug-naive and 
ASM-treated patients with GTCS and constructed func-
tional and structural brain networks. The coupling state 
between the functional and structural networks was fur-
ther evaluated using the NWCP method. This is the first 
study to use the NWCP method to integrate structural 
and functional networks in patients with epilepsy.

2  |   MATERIALS AND METHODS

2.1  |  Subjects

In this study, patients were recruited from the depart-
ment of the West China Hospital from 2016 to 2021, and 
diagnosed with GTCS based on the clinical and seizures 
semiology information consistent with the International 
League Against Epilepsy guidelines25 by neurologists 
(LY). We selected 21 patients with GTCS from the da-
tabase as the untreated patients (−) group, who were 
newly diagnosed and had not yet received medica-
tion. And the other patients with GTCS received ASMs 
(Levetiracetam). A sample of 29 healthy subjects was also 
included in this study as age and gender-matched control 
group (HC group). There were no differences between 
groups in age or gender. The demographic information 
of these patients was detailed in Table 1. The inclusion 
criteria included: (a) without other neurologic psycho-
logical disorders; (b) no developmental disabilities; (c) 
normal routine brain MRI scans; (d) Patients who were 
treated with levetiracetam alone; and (e) the head mo-
tion criterion of 3 mm and 3°. This study was approved 
by the ethical committee of the University of Electronic 
Science and Technology of China. Written informed con-
sent was obtained from each subject.

2.2  |  Data acquisition

All subjects underwent MRI scanning in the 3-Tesla 
MRI scanner (GE DISCOVERY MR750). High-
resolution T1-weighted images were obtained using 
a three-dimensional fast spoiled gradient-echo se-
quence. The scanning parameters included: repetition 
time (TR) = 6.008 ms; echo time (TE) = 1.984 ms; flip 
angle = 90°; field of view (FOV) = 25.6 × 25.6 cm2; matrix 
size = 256 × 256; and slice thickness = 1 mm (no gap). 
Resting-state functional data were obtained using a 
gradient-echo echo-planar imaging sequence. The main 
scanning parameters were as follows: TR = 2000 ms; 
TE = 30 ms; flip angle = 90°; FOV = 24 × 24 cm2; matrix 
size = 64 × 64; slice thickness = 4 mm (no gap); slice 
number = 35; and scanning time lasting 510 s (255 vol-
umes). During scanning, subjects were required to close 
eyes without falling asleep. DTI data were acquired using 
the spin echo pulse sequence: 76 slices, TR = 8500 ms, 
TE = 70 ms, voxel size = 2 * 2 * 2 mm, b-value = 1000 s/
mm2; FOV = 256 * 256 mm, three b0 images with 64 non-
colinear diffusion directions per shell. The acquisition 
time was 10 min.

2.3  |  Data preprocessing

Preprocessing of the fMRI dataset was performed 
using the NIT software package26 and SPM12 toolbox 
(Statistical Parametric Mapping, http://www.fil.ion.ucl.
ac.uk/spm). The fMRI data preprocessing included the 
following steps: (a) discarding the first five volumes, (b) 
slice-timing correction, (c) realignment, (d) normalized 
to the Montreal Neurological Institute space by using 
the EPI template, (e) linear detrending, and (f) regress-
ing out the nuisance signals (including 24-parameter 
motion correction, white matter signals, and the mean 
cerebrospinal fluid signals).

Image preprocessing steps of all DTI images were per-
formed using FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki), 

Untreated 
patients

Treated 
patients

Healthy 
controls P value

Gender (male/female) 21 (12/9) 20 (6/14) 29 (13/16) 0.216a

Age (years) 26.5 ± 14.2 24.7 ± 10.5 25.3 ± 8.9 0.868b

Age at onset (years) 22.7 ± 15.9 20 ± 11.5 – 0.544c

Handedness (right/left) 21/0 20/0 29/0 NaNa

Duration (years) 3.8 ± 6.2 4.7 ± 4.7 – 0.628c

a Chi-square test.
b One-way analysis of variance.
c Two-sample t test.

T A B L E  1   Demographic information 
of all subjects.
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including brain extraction, motion, and eddy current 
corrections. Then, the fractional anisotropy (FA) of each 
voxel was computed. Higher values of FA indicate more 
directionally restricted diffusion of water molecules, and 
lower levels of FA are commonly represented WM dam-
age. The affine transformation was used to co-register FA 
images in native space to the T1-weighted image of FSL. 
And structural images were nonlinearly registered to the 
FMRIB58_FA template. Then, an inverse warping trans-
formation from the standard space to the native dMRI 
space can be obtained.

2.4  |  Network analysis

2.4.1  |  Functional network

For each subject, the whole brain (excluding the cer-
ebellum) was segmented into 90 regions according to 
the automated anatomical labeling (AAL) template.27 
Regional time series were calculated by averaging all 
voxel time series within given region. Pearson's corre-
lation coefficient and the Fisher-z transformation were 
used to describe the functional relationship between 
each pair of regions. Functional connectivity defines 
statistical dependencies which exhibits the strength 
of the functional connection between two regions in a 
given state.28 All the FC values were retained in the later 
coupling analysis.

2.4.2  |  Structural network

The AAL template was registered to individual native 
space using the inverse transformation obtained above 
and divided the whole brain (excluding the cerebellum) 
into 90 regions. The white matter (WM) pathways were 
reconstructed using the deterministic streamline track-
ing algorithm.29 The mean of the fractional anisotropy 
(FA) values was computed to assess the relationship 
between different regions, and we obtained a 90 * 90 
symmetrical SC matrix for each subject. Because the de-
terministic streamline tracking algorithm can introduce 
false connections, we further processed the structural 
connection matrix. To identify highly consistent struc-
tural connections across different groups, a nonpara-
metric one-tailed sign test was performed for the three 
groups separately, and the union of the results of each 
group was used to describe the consistency.30 The union 
mask was used as a threshold rule for the structural 
connectivity matrices and to generate sparse connectiv-
ity matrices for subsequent analyses.

2.4.3  |  Coupling analysis of the 
functional and structural networks

The coupling between the functional and structural net-
works was measured using the modified NWCP method. 
This method determines the degree of collaborative 
change among brain networks, where a high NWCP value 
indicates high consistency between networks.

First, based on a previous literature,31 brain regions 
were divided into eight functional networks (visual net-
work, VN; limbic network, Limbic; sensorimotor network, 
SMN; DMN; dorsal network, DAN; frontoparietal net-
work, FPN; ventral attention network, VAN; and subcorti-
cal network, SCN). The modified NWCP was individually 
defined by using formula24:

where Ni, Nj represents the ith or jth network (i, j ≤ 8). 
To calculate parameter C, the functional and structural 
connection vectors were constructed. The functional 
connection values between two nodes of all subjects 
were extracted to form a functional connection vector. 
The same process was followed to obtain the structural 
connection vector. The Csig is the Pearson coefficient 
that is significant (P < 0.05). All Cm,n values are abso-
lute values before NWCP calculating here. If i = j, the 
NWCP value measures the within-network coupling 
relationship, otherwise, it measures the between-
network coupling relationship. A higher NWCP value 
indicates a stronger association between FC and SC be-
tween networks.

2.5  |  Statistical analysis

For the comparisons of functional and structural connec-
tions, a one-way analysis of variance (P < 0.001) and post 
hoc analyses (Student's t test, P < 0.01) were used to detect 
between-group differences in the strengths of FC and SC. 
The results were visualized using the BrainNet toolbox32 
and the Circos toolkit.33

The statistics of the coupling relationship between 
functional and structural networks were calculated 
using nonparametric permutation tests (10 000 itera-
tions). Specifically, the data of the two groups were shuf-
fled for FC and SC separately, the shuffled set was then 

NWCPi,j =

∑
m∈Ni

n∈Nj

�C�sigm,n

∑
m∈Ni

n∈Nj

�C�m,n
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reclassified into two groups, and the NWCP was recalcu-
lated. Significance was set at P < 0.05.

3  |   RESULTS

3.1  |  Functional network comparisons

Compared with the healthy control (HC) group, untreated 
patients showed a pattern of more enhanced FC, predomi-
nantly in the connections involving the right triangular 
inferior frontal gyrus and the right middle temporal gyrus 
(Figure  1). However, the functional connection strength 
of treated patients did not significantly differ from that of 
the HC group. For the complex interactions between brain 
regions, we found that the right triangular inferior fron-
tal gyrus acted as a key region. In addition, the functional 
connections of treated patients were generally lower than 
those of untreated patients and included the right middle 
temporal and right medial superior frontal gyri.

At the network level, the connectivity of the DMN 
regions of interest (ROIs) to the FPN and VN ROIs was 
significantly stronger in the untreated patients than in 
the HC group (Figure 1). Moreover, higher connectivity 
between the FPN ROIs and VN ROIs was also observed 
in the untreated patients relative to the HC group. In 
contrast, the connections between the SCN ROIs and 

the limbic ROIs showed the weaker connectivity in un-
treated patients. Compared with the HC group, treated 
patients showed higher FC between the DMN ROIs and 
FPN ROIs and decreased FC between the SMN ROIs and 
Limbic ROIs.

Compared with untreated patients, treated patients ex-
hibited significantly lower FC between ROIs belonging to 
different networks, primarily within the DMN, FPN, and 
VN. Furthermore, higher FC between the SCN ROIs and 
the limbic ROIs was observed.

3.2  |  Structural network comparisons

Compared with the HC group, the untreated and treated 
patients showed higher SC in the left medial occipital gyri. 
There was also a significant difference between the un-
treated and treated patients in the SC between the right 
medial cingulum and putamen.

We observed similar differences between the un-
treated and treated patients and the HC group (Figure 2): 
higher SC between the VN and FPN and between the 
DMN and FPN and lower SC between the VAN and DMN. 
Moreover, connections between the VAN ROIs and the 
SCN ROIs were lower, and those between the SMN ROIs 
and the limbic ROIs were higher, in untreated patients 
than in the HCs.

F I G U R E  1   Regions with significant differences in ROI-wise functional connectivity. (A) shows alterations between regions in untreated 
patients compared with the HC group; (B) shows interesting alterations in functional networks in treated patients compared with the HC 
group, and we can observe the differences between untreated patients and treated patients in the (C). The red line implies the enhanced 
connection, and the blue line is the weak connection. DAN, dorsal network; DMN, default mode network; FPN, frontoparietal network; 
HC, healthy controls; Limbic, limbic network; SCN, subcortical network; SMN, sensorimotor network; VAN, ventral attention network; VN, 
visual network.
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3.3  |  Coupling analysis of functional and 
structural networks

Figure  3 illustrates the difference in coupling between 
FC and SC. Compared with the HC group, untreated pa-
tients showed a lower degree of coupling within the DMN 
and between the DMN and VAN. However, all patients 
showed a lower degree of coupling between the limbic 
network and the SMN. Compared with untreated pa-
tients, treated patients showed a lower degree of coupling 
between the DMN and limbic network and a higher de-
gree of coupling within the DMN.

4  |   DISCUSSION

ASM is a common treatment option for patients with 
epilepsy to achieve seizure remission. Distinct brain re-
gions are likely affected by ASMs; therefore, network 
analysis is a suitable method to investigate the effect of 
ASMs. This study based on noninvasive brain imaging 
and brain network analysis characterized alterations in 
FC and SC and their degree of coupling in both treated 
and untreated patients. We found that (a) both patient 
groups showed a consistently higher structural connec-
tion strength between the ROIs of the DMN, FPN, and 
VN relative to HCs; (b) untreated patients showed a 
significantly higher FC than HCs within regions involv-
ing the DMN, FPN, limbic network, and VN, although 
only the connection between the DMN ROIs and FPN 
ROIs was higher in treated patients; (c) the degree of 
structural and functional coupling was lower within the 

DMN, between the DMN and VAN, and between the 
limbic network and SMN in untreated patients than in 
the HC group, although treated patients showed a lower 
degree of coupling in only one connection between the 
limbic network and SMN. Overall, the present find-
ings suggest that ASMs are more effective in improving 
functional abnormalities than structural connections. 
Consistent SC abnormalities across all patients indicated 
that structural abnormality may be a fundamental phe-
nomenon of epilepsy. Furthermore, ASMs may reverse 
the alterations in the degree of structural and functional 
coupling in epilepsy.

In line with a previous study,34,35 we observed higher 
connectivity between the DMN and other functional net-
works and within the DMN in patients than in HCs. The 
DMN is thought to be associated with the generation of 
epileptic discharges,36 and the widespread enhancement 
of connections in patients may be a byproduct of the rapid 
transmission of electrical signals through the brain during 
a discharge.37,38 When we compared the treated patients 
with the HC group, we showed higher functional and 
structural connections between the DMN and FPN in the 
patients. However, the differences that we observed be-
tween the untreated patients and the HC group were not 
apparent in the comparison between the treated patients 
and the HC group. This finding suggests that the DMN 
and FPN are more impacted by the disease than other 
brain regions. These connections that were unaffected 
by treatment may represent a fundamental pathological 
brain state in patients with GTCS. Therefore, we speculate 
that ASMs can improve brain states and have a greater 
positive impact on functional networks than on structural 

F I G U R E  2   Regions with significant differences in ROI-wise structural connectivity. The red line implies the enhanced connection, and 
the blue line is the weak connection. DAN, dorsal network; DMN, default mode network; FPN, frontoparietal network; HC, healthy controls; 
Limbic, Limbic network; SCN, subcortical network; SMN, sensorimotor network; VAN, ventral attention network; VN, visual network.
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networks to alleviate the disease. This may be one reason 
why effectively treating epilepsy is difficult.

The FPN is a higher order brain network that is re-
sponsible for executing cognitive control functions, such 
as working memory and attention selection.39,40 The en-
hanced connection between the FPN ROIs and ROIs of 
other networks, such as the VN and limbic network, in 
patients with epilepsy may reflect intrinsic information 

overintegration. A common phenomenon of epilepsy 
that may be related to this alteration is the loss of pa-
tients' sense of environment and self-control during 
seizures.2,41,42 We also found abnormally enhanced con-
nections within the primary networks, predominantly 
in the limbic network, SMN, and VN.43,44 The SMN and 
VN are key components of the primary-sensory percep-
tual cortices.45 It has been shown that the coordination 

F I G U R E  3   Abnormal changes of coupling of functional and structural networks. Black columns represent true coupling values. The 
gray columns represent the mean of the null distribution. The blue squares represent significant differences between groups. The color 
in the upper right diagram represents the strength of the coupling. *P < 0.05. DAN, dorsal network; DMN, default mode network; FPN, 
frontoparietal network; HC, healthy controls; Limbic, limbic network; SCN, subcortical network; SMN, sensorimotor network; VAN, ventral 
attention network; VN, visual network.
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of visual and motor activities is associated with the syn-
chrony of certain neural rhythms.46,47 In patients with 
epilepsy, the abnormal discharge characteristics may re-
sult in abnormal neural rhythms, and this may manifest 
as abnormally enhanced connections within the primary 
network, as we observed in this study.48 A previous study 
revealed structural connectivity abnormalities within 
the SMN and occipital lobe in individuals with photo-
sensitive characteristic in the idiopathic generalized ep-
ilepsies.49 Photosensitive epilepsy is commonly seen in 
patients with idiopathic generalized epilepsies, ranging 
from 30% to 90%,50 and various studies have reported evi-
dence for both occipital and more widespread cortical hy-
perexcitability in those with photosensitive epilepsy.50,51 
In line with this, we found that the structural connections 
between the occipital lobe in the VN and the FPN region 
were significantly stronger, and the connections between 
the FPN and DMN were stronger in patients than in HCs. 
These findings further suggest that abnormal connections 
between the occipital lobe and the DMN and FPN are a 
physiological mechanism of photosensitivity in those 
with idiopathic generalized epilepsies. However, we did 
not specifically collect data on photosensitivity character-
istics; therefore, further research is needed to explore the 
physiological mechanism underlying photosensitivity.

The synergy between functional and structural net-
works is crucial in the maintenance of physiological activ-
ities. Multimodal fusion provides an effective instrument 
for integrating the advantages of various neuroimaging 
methods to explore the relationship between brain net-
works.24,52 We observed that functional and structural 
coupling was only lower in connections between the lim-
bic network and SMN in GTCS patients than in HCs, in 
addition to connections within the DMN and between 
the DMN and VAN, which reflects the discordance be-
tween functional and structural networks in untreated 
patients. The limbic network and SMN are also import-
ant for generalized epilepsy. For example, the limbic net-
work is thought to be involved in generalized discharge 
generation,53–55 and the SMN is considered to be related 
to the motor symptoms of GTCS.56 This would explain the 
structural and functional decoupling between the limbic 
network and the SMN we observed. Interestingly, patients 
taking ASMs also showed a lower degree of coupling of 
this connection, which supports the importance of this 
connection in epilepsy. In addition, coupling within the 
DMN was significantly higher in patients taking ASMs 
than in those not taking ASMs. Therefore, we speculate 
that ASM improves brain function by restoring the struc-
tural and functional coupling relationship.

ASMs may influence brain activity in epileptogenic re-
gions,57 as shown by fMRI activation pattern changes58,59 
and structural remodeling.60 This study yielded similar 

findings in functional networks, such as alterations in func-
tional connections involving the DMN and FPN, although 
structural connections appeared to be less affected by ASMs 
than functional connections. These findings further sug-
gest that functional networks are more sensitive to ASMs, 
whereas structural network changes are latent and subtle. 
By exploring the coupling status of functional and struc-
tural networks, we found that the interaction between 
functional and structural networks was affected by ASMs. 
The coupling status of multiple networks was disrupted in 
untreated patients, with DMN as the core, whereas in pa-
tients taking medication, the coupling status was improved. 
Because ASMs can affect cortical activity,57 structure–
function coupling likely shows that alterations in func-
tional connections reflect underlying changes in structural 
connections. These results complement existing neuroim-
aging findings. Furthermore, our study provides an effec-
tive research method for exploring changes in functional 
and structural networks, which can be applied to analyses 
of other drugs or disease subtypes.

Our study has several limitations. First, because our 
study was a cross-sectional study, we are lacking a pre–
post medication treatment comparison within the patient 
group. Although we included both treated and untreated 
patients, a longitudinal study is necessary to account for 
individual differences. Additionally, differences in cogni-
tive abilities between groups were not evaluated; thus, the 
effects of treatment on cognition are unclear. We also re-
quire a larger sample size to improve the stability of our 
results. Finally, the modified NWCP method was used to 
combine different modes of data to explore brain network 
alterations. Although this does not pose any mathematical 
problem, the relevance of this method to physiological sig-
nificance requires further research.

5  |   CONCLUSION

Broadly enhanced brain connectivity may indicate that the 
communication between different brain regions is more 
active in patients with GTCS. This phenomenon suggests 
that highly synchronized brain networks are the founda-
tion for how epileptic activity spreads throughout the brain. 
Moreover, the coupling of structural and functional net-
works was affected by epileptic action, and thus, structural 
and functional decoupling may play a crucial role in gener-
alized epilepsy. Although the effect of ASMs may be more 
obvious in functional networks, the abnormal coupling of 
the functional and structural networks may be improved by 
ASM treatment. Therefore, the degree of coupling between 
the structural and functional networks may serve as an in-
dicator to evaluate the efficacy of ASMs. However, further 
study is needed to better understand the effects of ASMs.
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