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A B S T R A C T   

Whole-brain dynamic functional connectivity is a growing area in neuroimaging research, encompassing data- 
driven methods for investigating how large-scale brain networks dynamically reorganize during resting states. 
However, this approach has been rarely applied to functional magnetic resonance imaging (fMRI) data acquired 
during task performance. In this study, we first combined the psychophysiological interactions (PPI) and sliding- 
window methods to analyze dynamic effective connectivity of fMRI data obtained from subjects performing the 
N-back task within the Human Connectome Project dataset. We then proposed a hypothetical model called 
Condition Activated Specific Trajectory (CAST) to represent a series of spatiotemporal synchronous changes in 
significantly activated connections across time windows, which we refer to as a trajectory. Our finding 
demonstrate that the CAST model outperforms other models in terms of intra-group consistency of individual 
spatial pattern of PPI connectivity, overall representational ability of temporal variability and hierarchy for 
individual task performance and cognitive traits. This dynamic view afforded by the CAST model reflects the 
intrinsic nature of coherent brain activities.   

1. Introduction 

Functional magnetic resonance imaging (fMRI) has played a para
mount role in cognitive research over the past few decades, shedding 
light on how individual differences in behavioral attributes are associ
ated with specific brain structures and functions (Zhao et al., 2023). 
Connectome-based analyses usually focus on resting-state fMRI (van den 
Heuvel and Hulshoff Pol, 2010). However, there are reasons to suspect 
that this state may be excessively unconstrained to provide a precise 
view of cognitive processing (Finn et al., 2017; Gonzalez-Castillo et al., 
2021). Acquiring fMRI data while subjects actively perform specific 
tasks (task state fMRI, tfMRI) can be used to explicitly manipulate their 
brain state and obtain information about the FC patterns associated with 
cognition and behavior (Greene et al., 2018). Indeed, apart from PPI, 
other methods may face challenges in defining task activation for FC or 
overcoming limitations imposed by hypothesis–driven approaches and 
model complexity when analyzing large–scale networks (Stephan et al., 
2010). 

The central role of dynamic neuronal signaling in adaptive cognition 
and behavior is now widely recognized (Chang and Glover, 2010; Hebb, 
1949). Therefore, multiple methods have been proposed to capture the 
dynamic FC (dFC) in the brain under different task conditions. One such 
development is the sliding-window approach, which involves 
computing a metric characterizing FC over gradually shifted time win
dows of data (Allen et al., 2014). Most statistical analysis for dFC assume 
that network density and sparsity are fixed, in contrast to the temporal 
variability of connection strength (Shine et al., 2015). However, 
emerging methodologies have demonstrated that the connectivity be
tween brain regions is highly dynamic, enabling the emergence and 
disappearance of transient functional repertoires through time (Hutch
ison et al., 2013). What is even more unsatisfactory is the fact that most 
current research paradigms, such as the Chronnectome (Calhoun et al., 
2014), which aim to simultaneously consider temporal and spatial 
changes in time-varying research, still analyze these two aspects inde
pendently (Iraji et al., 2019; Liu et al., 2020). 

In this study, we proposed a unified framework for a context- 
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dependent, model-based, data-driven dynamic large-scale effective 
network analysis. We then represented and validated a hypothetical 
model as a series of spatiotemporal synchronous changes in connections 
that are activated by specific task conditions. We refer to these changes 
as a trajectory and entire model as Condition Activated Specific Tra
jectory (CAST). Briefly, we combined a generalized form of context- 
dependent psychophysiological interactions (gPPI) with the sliding- 
window approach. To represent the hypothetical model, we first 
explain the hypothesis by assuming that no connection necessarily re
mains activated and no node necessarily keeps connected throughout 
the duration of any condition. Then, by introducing the global null hy
pothesis (H0), the connection was not activated in any of time window. 
The alternative hypothesis (H1) would be the connection was activated 
at least in one time window, which is properly fit our model. At last, we 
validated the CAST model by using tfMRI data from the Human Con
nectome Project (HCP; S1200 release). Our focus was on assessing the 
superior model performance in terms of intra-group consistency and 
overall representational ability (ORA) for individual task performance of 
each condition and cognitive traits. This evaluation was done in contrast 
to other models used as controls. 

2. Methods 

2.1. HCP data selection 

Our dataset comes from the S1200 release of the HCP (Van Essen 
et al., 2012). We collected data from 191 participants, including tfMRI 
data for the working memory task (N-back) of seven major domains 
(Barch et al., 2013) with corresponding measures of task performance in 
the form of reaction time (RT) and accuracy (ACC) for each condition. 
We also obtained cognitive measures for accessible subdomains such as 
episodic memory, cognitive flexibility, and inhibition (S1 Table). We 
excluded 45 subjects based on the quality control issues identified by the 
HCP, namely issue code A (anatomical anomalies), issue code B (seg
mentation and surface QC), and issue code C (data partially acquired 
during a period of head coil instability), leaving us with data from 146 
individuals. 

2.2. HCP n-back working memory task 

During the working memory task, participants were presented with 
blocks of trials involving four types of pictures depicting places, tools, 
faces, and body parts. We had access to data for two runs through phase 
encoding in the left-to-right and right-to-left directions, each containing 
four blocks (one for each image type) lasting 27.5 seconds over a period 
of 301 seconds (total of 405 frames). Half the blocks used a 2-back task, 
while the other half used a 0-back task. 

2.3. Data preprocessing 

We obtained tfMRI data preprocessed using the minimal pre
processing pipelines of HCP (Glasser et al., 2013), which involve 
gradient unwarping, motion correction, field map based EPI distortion 
correction, brain-boundary-based registration of EPI to structural 
T1-weighted scan, non-linear (FNIRT) registration into MNI152 space, 
and grand-mean intensity normalization. For subsequent volume-based 
analysis, we applied spatial smoothing with a Gaussian kernel of 4 mm 
full width at half maximum by using SPM 12 (https://www.fil.ion.ucl. 
ac.uk/spm/software/spm12/). 

Because unrelated behavioral variables can confound the calculation 
of ORA, we only relied on the cognitive category of behavioral measures 
and performances (ACC and RT) for each condition. We discarded the 
measure of delay discounting, because the available items are difficult to 
directly convert into simple and easily understandable metrics. The 
Penn Progressive Matrices (PMAT24) for fluid intelligence, only indi
cated the total number of skipped items. The Variable Short Penn Line 

Orientation Test (VSPLOT) for spatial orientation, and the Penn Word 
Memory Test (IWRD) for verbal episodic memory, only provide the 
percentage of correct responses. Thus, we excluding these items after 
covert them into ACC, hit and false alarm rates (FAR). 

2.4. Condition activated specific trajectory (CAST) analysis 

To operationalize CAST model, we established a pipeline involving 
four Steps (Fig. 1). First, we defined whole-brain seeds/regions of in
terest (ROIs) and extracted averaged blood oxygenation level dependent 
(BOLD) signal as physiological term into model. We utilized the well- 
documented atlas proposed by Jiang and collaborators (Fan et al., 
2016), which segments the cerebrum into 246 anatomical regions. For 
each subject, we extracted the averaged BOLD time series of all voxels 
within a 6 mm radius of the centroid coordinates in each brain region by 
using singular value decomposition (SVD) method. Before incorporating 
these seed time-series signals into the modeling analysis, we also 
regressed representative signals within white matter and the cerebro
spinal fluid using the first eigen-variate of probabilistic templates 
generated by SPM 12 after Gaussian-weighted high-pass filtering with a 
cutoff of 200 s (Barch et al., 2013). 

The second Step involved construction of the whole-brain PPI model. 
We adopted the processing functions of gPPI toolbox (https://www.nitr 
c.org/projects/gppi) on the level of brain regions (Gerchen et al., 2014) 
for each subject. Briefly, we demeaned the time series containing the 
timing of stimulus for each condition execution and convolved it with 
Canonical Hemodynamic Response Function (HRF) to form the psy
chological terms (psycho) in the model. For each seed, the interaction 
terms (PPI) are constructed by multiplying the averaged signal with time 
series of each task condition after deconvolved it with the HRF. Then, 
the interaction terms are also need to go through demean and convolve 
with the HRF again. At last, the psycho, physiological and PPI terms 
targeting to each of regions were incorporated into one multiple linear 
regression (MLR) model. 

The third Step involved process for dynamic whole-brain PPI ana
lyses. Firstly, the MLR model was adjusted to account for collinearity 
among regressors and serial autocorrelations by introducing the pre- 
whiten procedure implemented in SPM. Beta values of each PPI for 
different condition (β4 and β5 in this study, Fig. 1 Step 2) were estimated 
using MLR and saved in a full connectivity matrix between all seeds. 
Dynamic analysis was conducted with the segmented model by using 
sliding window approach. We used a rectangular window (width of 35 
frames) that only covered one block size in the task. Combined with the 
minimum moving size (step of 1 frame) for capturing the finer move
ment trajectories of spatiotemporal synchronous changes in connec
tions, resulted in W = 371 windows ((total – width) / step + 1). We 
excluded entire segmented model for which any of time series of each 
condition is a constant vector in case the issues such as model instability 
and multicollinearity. 

In the fourth Step, we introduced the global null hypothesis (H0) for 
each of elements across the PPI matrices of time windows, excluding the 
diagonal, to test if a connection was not activated throughout a per
formed condition. Then the alternative hypothesis (H1) can be repre
sented the characteristic of spatiotemporal synchronous for all 
connections activated by one task condition. In this way, we start by 
reshaping all matrices of time windows with one condition, which 
containing statistical t-values that are calculated by dividing the effect 
sizes (β4 or β5) by the standard error, into a single matrix. Its rows 
represent the time windows and columns represent the connections. To 
represent a connection across time windows and avoid the influence of 
positive and negative signs on each other, we selected the minimum 
negative and maximum positive t-values from the activated connections, 
as these values can reject the H0. Then we proceeded to perform False 
Discovery Rate (FDR) multiple comparison correction separately for 
these extreme t-values with different signs. The correction was applied 
with a significance level of p≤0.05. The resulting thresholds were then 
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applied in the process of sparsification for each time windows. Con
nections that fell below the thresholds were considered spurious (non- 
significant) and were replaced with zero. From introducing the global 
null hypothesis up to replacing spurious connections with zeros, we 
referred to these processes as “adopted global analysis”. We enhanced 
the continuity between time windows by standardizing the retained 
connections (β4 or β5) within each time window using the L2–norm. This 
method does not impose consistent network density across different time 
windows. The remain time windows, along with the activated connec
tions that surpass the corrected thresholds, form the CAST network. 

2.5. Estimating dynamic characteristics of CAST 

Within each matrix of time window, brain regions are connected in 
three-dimensional (3D) space. CAST captures a series of spatiotemporal 
synchronous changes in significantly activated connections across time 
windows, i.e., in a four-dimensional (4D, 3D + time dimension) manner. 
For each subject, the temporal variability (TV) was analyzed by calcu
lating the standard deviations for each (i) connection (e) across the time 
windows (w) that were activated (non-zero, Ǝ) as follow: 

TVi = σ
(
∃
(
ei,w

) )
# (1) 

The spurious connections were all replaced with zeros. Then, the 
overlap rate (OR), which serves as an indicator of the spatial variability 
in connectivity, can be calculated directly as the ratio of the number of 
activation (w) for each (i) connection to the total number of time win
dows (W), as follow: 

ORi =

∑
∃(wi)

W
# (2) 

Finally, by evaluating whether elements in the OR matrix are zero, 
we obtained a binarized individual 3D spatial pattern matrix, which was 
used for subsequent analysis of intra-group consistency. 

2.6. Characterizing the dynamical hierarchy 

According to the hypothesis of CAST, in which no connection 
necessarily remains activated and no node necessarily keeps connected 
throughout the duration of any condition, the sizes of connected nodes 
and network density may vary across time windows as a result. Due to 
the effective connectivity matrix, we calculated the outdegree and 
indegree of each node within every time window. Then, we defined a 
dynamical topological characteristic (D) that describes the different 
types of nodes (n) in each directed asymmetric matrix of the time win
dows (w) as follow: 

Dn,w =
outdegreen,w − indegreen,w

outdegreen,w + indegreen,w
# (3) 

Notably, if a node only has outdegree without indegree, then this 
node is referred to as the starting point with D = 1; Conversely, if a node 
only has indegree without outdegree, then this node is referred to as the 
ending point and D = − 1. When D = 0, the node is referred to as a full 
intermediate point. In other cases, when D is a non-integer within the 
range of − 1–1, the node is also referred to as an intermediate point, 
indicating its representation and drive capability for the starting/ending 
point or outflow/inflow circuits. 

In this way, we further construct the dynamical hierarchy based on 
nodes with different values of D. To gain more insights into this 

hierarchical structure, we distinguished different methods based on two 
considerations: 1) whether to only accept the full intermediate point by 
replacing non-integer D values with 0; 2) calculating the value of D in 
each time window and averaging it, or directly computing it within the 
individual 3D spatial pattern (Table 1). 

To compare these methods and facilitate the matching with subse
quent analysis, we extracted ten global metrics. These metrics were 
employed to provide a more generalized depiction of the dynamical 
hierarchy constructed by the three methods (taTRs, iDTCs, and taDTCs) 
separately. 

1) Mobility: this metric describes the capacity or tendency for in
formation to flow from any direction in the dynamical hierar
chical spatial layout. It quantifies the extent to which the mean 
absolute value of D, obtained from all existing nodes (N), ap
proaches 1. 

Mobility =

∑
i|Di|

N
# (4)    

2) Tropism: this metric indicates the representation strength for a 
fully out/inflow network within the dynamical hierarchy. It is 
determined by the average value approaching either 1 or − 1. 

Tropism =

∑
iDi

N
# (5)    

3) Dispersity: this metric describes which set of nodes with outflow 
(D ˃ 0) or inflow (D ˂ 0) direction presents a numerical 
advantage. 

Dispersity =
N(D > 0) − N(D > 0)

N
# (6)    

4) Breadth: this metric reflects the ratio of unique (!) levels within 
the hierarchy. 

Breadth =
N(!(D) )

N
# (7)    

5) Span: this metric estimates the dispersion (σ) of unique hierarchy, 
that is the average deviation from the central level. 

Fig. 1. Fundamental steps of the pipeline for CAST analysis. Briefly the pipeline involves the following Steps: Step 1: extracting the averaged BOLD signals using 
a customized whole-brain parcellation; Step 2: Constructing the MLR model, which includes the separate time series for each condition (psycho), the averaged BOLD 
signs of a region (physiological), interaction terms for each condition, and covariates; Step 3: estimating the whole-brain PPI for each segment model using a sliding 
window approach; Step 4: filtering out spurious connections and constructing the CAST model to represent the hypothesis of spatiotemporal synchronous changes by 
using the adopted global analysis. VN, visual network; SMN, somatomotor network; DAN, dorsal attention network; VAN, ventral attention network; FPN, fronto
parietal network; DMN, default mode network; SCN, sub-cortical network. 

Table 1 
The methods for constructing the dynamical hierarchy.    

1) Whether to set the non-integer output to 0? 

Yes No  

2) Initial dimension 3D Excluded iDTCs 
4D taTRs taDTCs 

Note: We did not adopt the method of replacing non-integer values with 0 when 
analyzing the 3D spatial pattern directly. As the hierarchy only consists of three 
levels in this situation, we consider this method cannot provide more informa
tion about the dynamical characteristic. Therefore, we retained three methods: 
1) time averaged topological roles (taTRs); 2) integrated dynamical topological 
characteristics (iDTCs); 3) time averaged dynamical topological characteristics 
(taDTCs). 
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Span = σ(!(D) )# (8)    

6) Depth: this metric indicates the magnitude of hierarchy by using 
the difference in extreme values, and rescaling the magnitude 
range of − 1–1. 

Depth =
max(D) − min(D)

2
# (9)    

7) Minimal resolution: this metric reflects the smallest spacing in the 
dynamical hierarchy with the minimum value of inter-layer 
(sorted with D from − 1–1) differences described by the first 
order difference (Δ). 

Minimalresolution = min(Δ(!(D) ) )# (10)    

8) Mean resolution: this metric describes the average spacing in the 
hierarchy with the mean of inter-layer differences. 

Meanresolution = μ(Δ(!(D) ) )# (11)    

9) Median resolution: this metric describes the median (Me) spacing 
in the hierarchy. 

Medianresolution = Me(Δ(!(D) ) )# (12)    

10) Resolution error: this metric describes the dispersion degree of 
entire spacing in the hierarchy with the standard error of inter- 
layer differences. 

Resolutionerror = σ(Δ(!(D) ) )# (13)  

2.7. Different models to compare with the CAST model 

To validate the hypothesis of the CAST model, we established three 
control models for comparison, in which the Step 3 and 4 in the CAST 

pipeline were adjusted:  

1) Stationary model, which included Steps 1–2 and estimated β4 and β5 
matrices directly using the complete time series.  

2) Dynamic gPPI model 1, which included all steps, differed from the 
CAST model in the application of corrected thresholds during the 
sparsification process for each time window. In this model, a 
connection with corresponding sign (+/–) across time windows was 
considered activated if the global null hypothesis H0 was rejected. 

3) Dynamic gPPI model 2, based on the CAST model, employed a cri
terion where if the number of activations for a connection with its 
corresponding sign (+/–) across time windows was less than 50% of 
the total windows, the connections with their corresponding sign 
would be all replaced with 0. This percentage (50%) was considered 
to possess the highest generalization ability as it required at least two 
time windows in dynamic research. 

We excluded zero values from the calculation of TV in the Dynamic 
gPPI model 1 and 2, as well as the CAST model, in which the effect of OR 
can be investigated independently. To validate this independence, we 
established an additional control model named CAST model 2, which 
included zero values in the calculation. 

2.8. Evidences for validating the CAST model 

We relied on three primary evidences to validate CAST compared to 
other four models (Fig. 2). Notably, the assessment for the independence 
of individual TV and OR for each model is not as primary evidence and is 
validated in the supplemental material instead. For Evidence 1, we 
calculated the intra-group consistency of individual spatial pattern by 
determining the median percentage of overlap among all connections 
within different models. To estimate the significance of superior con
sistency, we conducted a permutation test (S1a Fig) with 2000 itera
tions. Briefly, we randomly select one model for each subject with 
replacement in each iteration. The consistency is then calculated for 
each random sample to construct a null distribution. The significance of 
each model was determined by the number of its consistency values 
smaller than the random sample, divided by the number of iterations 

Fig. 2. Flowchart of the validation process for the CAST model. After preprocessing the tfMRI data, the stationary model and the CAST model were initially 
calculated using either the complete time series or fixed window length. Afterwards, the corrected thresholds were used to construct additional models, including 
Dynamic gPPI model 1 and 2, as well as CAST model 2. The next step involved measuring the binarized spatial pattern, matrixes of overlap rate and temporal 
variability, and hierarchy for nodes. The median percentage of overlap within the intra-group was computed as a measure of consistency for Evidence 1. Simul
taneously, the correlation between the individual overlap rate and temporal variability was determined. The overall representational ability of temporal variability 
and hierarchy for individual cognitive measures and task performance were analyzed as the Evidence 2 and 3. Finally, a cross-validation process was conducted 
exclusively for evaluating the overall representational ability in relation to individual task performance. 
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(2000). 
For Evidence 2, we compared the ORA of each model in temporal 

variability of network PPI connectivity. Briefly, we first extracted the 
average TV of PPI connectivity within intra-networks and inter- 
networks by using Yeo’s parcellation of networks (Yeo et al., 2014). 
Then, we calculated the Pearson’s correlation between the TV and 28 
behavioral data (individual cognitive traits and task performance) and 
saved the significant correlation coefficients in a matrix for each model. 
The rows of correlation matrix represent the averaged TV within 
intra-network and inter-network, while the columns represent the 
different behavioral data. To estimate the significance of superior ORA, 
we performed a permutation test (S1b Fig) with 2000 iterations. In each 
iteration, we randomly exchanged the rows of matrix of models. The 
ORA of each model is calculated for each random sample using four 
indexes to construct null distribution. These indexes including: 1) the 
average absolute value of significant correlation coefficients (β), 2) the 
average absolute value of significant statistical t-value (t) derived from 
β, 3) the sum of eigenvalues of each matrix and 4) the number of sig
nificant correlations. The significance of each ORA index was deter
mined by the number of its values smaller than the random sample, 
divided by the number of iterations (2000). 

For Evidence 3, we compared the ORA of each model using ten global 
metrics extracted from the dynamical hierarchy. The correlation matrix 
was calculated with these global metrics, not TV. The rest of process was 
the same as in Evidence 2. 

3. Results 

3.1. Evidence 1: Intra-group consistency of spatial pattern 

The intra-group spatial pattern consistency for all models, along with 
their significance, is summarized in Table 2. We found that regardless of 
task condition (0-back or 2-back), the Dynamic gPPI model 1, CAST 
model and 2, which shared the same spatial pattern, exhibited signifi
cantly (p ≤ 0.001) superior consistency reaching almost 100%. In 
contrast, the consistency of Stationary model and Dynamic gPPI model 2 
was barely close to 10%. 

S2 and S3 Figs provided additional details about the characteristics 
of the spatial pattern for the Stationary model, Dynamic gPPI model 2 
and CAST model. Briefly, only the percentage of overlap within the 
CAST model surpassed the threshold (p ≤ 0.05, FDR corrected). Apart 
from the significance, the Stationary model shared a similar spatial 
pattern. Therefore, it is reasonable to believe static effect represents the 
magnitude of the average dynamic effect and highest overlap rate. 
Lastly, we examined the significance of the network PPI spatial of CAST 
model using the permutation test (S1c Fig). 

3.2. Evidence 2: The overall representational ability of temporal 
variability in network PPI connectivity 

As seen in Table 3, only two CAST models exhibited statistically 
significant results for all indices of the ORA by using permutation test. 
Although the Dynamic gPPI model 1 shared the same spatial pattern 
with CAST models, only the sum of eigenvalues and the number of 
significant correlations achieved mild significance. While the indexes 
produced by the CAST model were overall lower than model 2, the CAST 
model outperformed model 2 when only including the task performance 
as the behavioral data (S2 Table). 

We also observed that only these three models, Dynamic gPPI model 
1, CAST model and 2 with the same spatial pattern were able to surpass 
the threshold (p ≤ 0.05, FDR corrected) in both one-sample t tests and 
permutation tests (S1a Fig) for TV matrices. However, they did not share 
significant spatial pattern (S4 and S5 Figs). The main differences were 
primarily observed in the somatomotor network (SMN), ventral atten
tion network (VAN) and frontoparietal network (FPN) as inflow 
(modulated) networks. It is suspected that the Dynamic gPPI model 
reserved most of spurious connections, as FPN appeared to play an 
insignificant role in this cognitive task. 

We further validate the optimal ORV of CAST model 2 in TV by 
investigating the independence of TV and OR for each model. For each 
subject, we first performed a Pearson’s correlation analysis between TV 
and OR matrix, excluding the diagonal and positions with a value of 0. 
Then, we conducted a one-way rANOVA and post hoc tests for these 
coefficients of each model. The results (S6 Fig, S3 and S4 Tables) 
revealed significant main effect (p ≤ 0.001) and differences among the 
models (p ≤ 0.001) except for the comparison between Dynamic gPPI 
model 1 and 2, regardless of the conditions (0-back and 2-back). In 
contrast to CAST model 2, which exhibited the hightest correlation, 
CAST model effectively distinguished between the effects of TV and OR. 
The mean correlation values of CAST model, Dynamic gPPI model 1 and 
2 were all closed to 0. However, in contrast to Dynamic gPPI model 1 
exhibited the most compressed distribution, while Dynamic gPPI model 
2 had the widest distribution (S6 Fig). 

3.3. Evidence 3: The overall representational ability of the dynamical 
hierarchy 

We devised three methods to capture the overall dynamical topo
logical characteristics for each node and subsequently constructed 
different hierarchical structures (Fig. 3). In terms of the distribution 
range of characteristic extracted from each method, we observed that 
the spatial layout provided by the iDTCs method was relatively flat, with 
only a few nodes showing prominent D. The dynamical hierarchy con
structed by the taTRs method indicated that almost all observed nodes 
were in the outflow direction. Therefore, it is more rational to 
acknowledge that the taDTCs method captured more comprehensive 
hierarchical information. Notably, these two time-averaged (ta) 
methods refer to the spatiotemporal synchronous changes in connected 
nodes. By applying the same procedure to validate the ORA with TV, 
using different combinations of ten global indices extracted from each 
hierarchy and PPI models, we observed that only the combination of 
CAST model and the taDTCs method showed full significance in four 
indexes of ORA (Table 4). This significant superiority was also cross- 
validated when including only the task performance as the behavioral 
data (S5 Table). 

4. Discussion 

In this study, we proposed a new model called the Condition Acti
vated Specific Trajectory (CAST) model to capture the spatiotemporal 
synchronous changes in connections that activated by specific task 
conditions. The abbreviation CAST highlights the assumption of a 
transmission property, in which no connection necessarily remains 

Table 2 
The performance of each model with the Evidence 1.  

Condition Model Consistency 

0-back Stationary model 0.06849  
Dynamic gPPI model 1 0.9863***  
Dynamic gPPI model 2 0.00685  
CAST model 0.9863***  
CAST model 2 0.9863*** 

2-back Stationary model 0.06849  
Dynamic gPPI model 1 0.9863***  
Dynamic gPPI model 2 0.0137  
CAST model 0.9863***  
CAST model 2 0.9863*** 

Note: asterisks (*) indicate significance level from the permutation test: * for 
p≤0.05, ** for p≤0.01, *** for p≤0.001. 
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activated and no node necessarily keeps connected throughout the 
duration of any condition, and circuits can be connected in a four- 
dimensional manner. To validate this assumption of the CAST model, 
we constructed four additional models and compared them with mul
tiple lines of evidences from three different aspects: intra-group con
sistency of spatial pattern of connectivity, overall representational 
ability (possessed meaning) with temporal variability of network PPI 
connectivity and dynamical hierarchy. 

As the fundamental algorithm used to analyze task-dependent con
nectivity in this study, PPI can be regarded as a condition specific change 
in effective connectivity, under a simple general linear model interre
gional coupling (Di et al., 2021). The functional connectivity, in which 
the correlation between time courses of different regions are directly 
analyzed, is highly contributed by the spontaneous neural activity 
(Biswal et al., 1995), or other common factors such as common 
anatomical connectivity (Honey et al., 2009), common neurovascular 
responses (Sivakolundu et al., 2020), physiological noises (Weissen
bacher et al., 2009), or head motion (Power et al., 2012). Therefore, 
effective connectivity analysis provides more informative and valuable 
insight into whether connections are modulated by task conditions. In 
addition to the PPI method, other model approaches such as dynamical 

causal modeling (DCM) (Friston et al., 2003) and Granger causality 
analysis (GCA) can also estimate the underlying causal structure. 
However, these methods have certain limitations (Gerchen et al., 2014). 
For instance, DCM is computationally expensive, and is restricted to 
specific models with only a few nodes. GCA estimates the causality by 
taking time lags into account, making it is difficult to separate different 
condition context and critical for incorporating the signal itself (Smith 
et al., 2011). Besides, PPI has bridged the gap between activation and 
connectivity analysis and has matured in analysis for the task-dependent 
connectivity changes in a whole-brain manner (Cocchi et al., 2013). 

To be compatible with the dynamic analysis of PPI, we decided on 
using sliding-window. Other available methods, such as multiplication 
of temporal derivatives (MTD) (Shine et al., 2015), and co-activation 
(CAP) (Liu et al., 2013) undermine the advantages of PPI. Previous 
research with PPI-CAPs demonstrated high consistency in effective 
connectivity patterns across subjects and time, and explicitly revealed 
transients in tracking connectivity patterns (Freitas et al., 2020), which 
should benefit naturalistic paradigms. However, the overlaid averaged 
PPI map without estimation in MLR is unable to provide any information 
related to flow direction. Considering the concerns raised by the selec
tion of sliding-window parameters, multiple studies have indicated a 

Table 3 
The performance of each model with the Evidence 2.  

Condition Model β t statistic Eigenvalue Number 

0-back Stationary model 0 0 0 0  
Dynamic gPPI model 1 0.01857 0.22749 22.578* 167*  
Dynamic gPPI model 2 0.00811 0.08921 13.666 66  
CAST model 0.02084** 0.25518** 22.952** 188**  
CAST model 2 0.02561*** 0.31463*** 24.450*** 218*** 

2-back Stationary model 0 0 0 0  
Dynamic gPPI model 1 0.01830 0.22435 22.025* 162  
Dynamic gPPI model 2 0.00973 0.10459 16.056 80  
CAST model 0.02283** 0.27963** 24.002*** 205**  
CAST model 2 0.02530*** 0.31081*** 23.410** 214*** 

Note: asterisks (*) indicate significance level from the permutation test: * for p≤0.05, ** for p≤0.01, *** for p≤0.001. 

Fig. 3. Dynamical hierarchy of CAST model using three different methods. Different subgraphs correspond to different combinations of task conditions (0-back 
or 2-back) and the method used to capture the overall dynamical topological characteristics (D) for each node (column). Each color of nodes represents one subject, 
and the black line indicates the group–averaged D. 
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limited extent of problems (Choe et al., 2017; Cohen, 2018). Therefore, 
in this study we proceeded without hesitation to establish the sequence 
of model construction and segmentation. We excluded models with 
convolved psychological regressors that resulted in constant series after 
segmentation. From an algorithmic point of view, in addition to using a 
rectangular window with a length that merely covered the duration of 
each task block (35 frames), we employed a step size of 1 frame to 
capture finer changes. 

Currently, most statistical analysis for dFC assume that network 
density remains stable (Shine et al., 2015). On the contrary, a study 
using spatial ICA over a short sliding window found that the default 
mode network (DMN) changes significantly over time, and reported a 
considerable degree of spatial heterogeneity, suggesting that no voxel 
was continuously connected to the primary DMN activity (Kiviniemi 
et al., 2011). Although the Chronnectome was introduced as a model for 
observing nodal activity and changes in connectivity patterns over time 
(Calhoun et al., 2014), there is still dissatisfaction with the approaches 
in this field. Typically, temporal variability is detected with fixed or full 
connections among nodes, while spatial variability is assessed through 
the dynamic switching of module partition (modular variability) for 
specific nodes, analyzed within each window at the start by setting a 
network density (Liu et al., 2020). Thus, our hypothetical CAST model is 
assuming that no connection necessarily remains activated and no node 
necessarily keeps connected throughout the duration of any condition 
by introducing a global null hypothesis to test as following. 

Dynamic gPPI model 1 and CAST model exhibit significantly greater 
intra-group consistency compared to typical Stationary model and Dy
namic gPPI model 2. This superiority is laid on the group-level statistical 
analysis, where a higher median consistency indicates a larger accoun
ted sample. The reason for conducting group-level analysis on the 
sparsified individual connectivity matrix is that this approach can 
effectively avoid the inclusion of spurious connections, thereby 
increasing the reliability and interpretability of the results. An extreme 
counterexample is when the individual connectivity beta values are not 
significant but have very low intra-group connection standard errors, 

resulting in a meaningless group-level significance still. That is also why 
in recent years, an increasing number of studies have appealed to effect 
sizes rather than excessive reliance on statistical values (Wasserstein and 
Lazar, 2016). 

Another counterexample is when the individual connectivity beta 
values are predominantly significant, yet they exhibit diverse signs cross 
time windows, ultimately resulting in group-level insignificance. 
Considering the generalization ability of model, we denied the model 
using one-sample t tests, due to restriction of the sample size. Addi
tionally, during the initial pretest, we observed that no single connection 
remained significant under the conjunction analysis for individual time 
windows. This led us to employ the Dynamic gPPI model 2 to capture the 
overall significance, while controlling for the criterion of the number of 
significant time windows for each connection. We selected 50% as the 
criterion with hightest generalization ability in dynamic analysis, as it 
requires a minimum of two samples. Importantly, both Dynamic gPPI 
model 1 and 2 were designed to test the hypothesis, but they differed in 
the level of strictness for controlling overall significance in two 
directions. 

When comparing the overall representational ability of temporal 
variability in network PPI connectivity, although the Dynamic gPPI 
model share the same 3D spatial pattern with CAST model, it fails to 
outperform. This result further confirms the presence of spurious con
nections and their confounding effect on interpretation. Additionally, 
through the validation of the independence of TV and OR, we not only 
observed the highest correlation in CAST model 2, but also confirmed 
the superior interpretability due to the inclusion of spatial variability of 
connections represented by OR. Taken together, these findings validate 
the hypothesis of trajectory. 

Regarding the TV matrix of the CAST model, clear differences be
tween the two task conditions were restricted to the FPN network, in line 
with the activation count maps for 2-back versus 0-back (Barch et al., 
2013). Moreover, in a previous study of the dynamic causal brain 
pathway associated with working memory, the FPN was found to 
distinguish between working memory load and predict performance, 

Table 4 
The performance of each model with the Evidence 3.  

Condition Model Dynamical hierarchy β t statistic Eigenvalue Number 

0-back Stationary model iDTCs 0.00643 0.07836 1.899 10   
taTRs 0.00123 0.01493 0.559 2   
taDTCs 0.00643 0.07836 1.899 10  

Dynamic gPPI model 1 iDTCs 0.02679 0.32612 5.759 41   
taTRs 0.00128 0.01560 0.585 2   
taDTCs 0.02649 0.32339 5.451 39  

Dynamic gPPI model 2 iDTCs 0.02790 0.33995 4.491 42   
taTRs 0.02913 0.35508 4.747 43   
taDTCs 0.02919 0.35627 4.823 42  

CAST model iDTCs 0.02679 0.32612 5.759 41   
taTRs 0.03052 0.37329 5.271 42   
taDTCs 0.04419** 0.54232** 7.675** 58*  

CAST model 2 iDTCs 0.02679 0.32612 5.759 41   
taTRs 0.03052 0.37329 5.271 42   
taDTCs 0.04419** 0.54232** 7.675** 58* 

2-back Stationary model iDTCs 0.00124 0.01513 0.801 2   
taTRs 0 0 0 0   
taDTCs 0.00124 0.01513 0.801 2  

Dynamic gPPI model 1 iDTCs 0.03084 0.37689 6.545 45   
taTRs 0.00128 0.01560 0.585 2   
taDTCs 0.03086 0.37676 5.308 45  

Dynamic gPPI model 2 iDTCs 0.01490 0.18110 4.731 23   
taTRs 0.02828 0.34415 5.839 43   
taDTCs 0.02238 0.27249 5.592 34  

CAST model iDTCs 0.03084 0.37689 6.545 45   
taTRs 0.02545 0.31165 6.586 35   
taDTCs 0.04812** 0.59261** 8.348** 60**  

CAST model 2 iDTCs 0.03084 0.37689 6.545 45   
taTRs 0.02545 0.31165 6.586 35   
taDTCs 0.04812** 0.59261** 8.348** 60** 

Note: asterisks (*) indicate significance level from the permutation test: * for p≤0.05, ** for p≤0.01. 

X. Chang et al.                                                                                                                                                                                                                                  



Brain Research Bulletin 212 (2024) 110938

9

suggesting that causal outflow and inflow hubs are all maintained in the 
FPN (Cai et al., 2021). Although we are not the first to report that 
working memory tasks carry more predictive power for such cognitive 
abilities (Jiang et al., 2020), our results represent the first attempt at 
interpreting their meaning and potential, because the trend of vari
ability observed with PPI differs from that reported by dFC studies, 
which consistently observed a general decrease when an individual is in 
a constrained cognitive environment (Chen et al., 2015; Cohen, 2018). 

Inspired by a recent study that identified the modular architectures 
of dynamic functional networks (Liu et al., 2020), we attempted to 
validate the CAST by comparing the ORA of hierarchy that constructed 
based on the symmetric variation rate between out-degree and in-degree 
for each node. We referred to this rate as the dynamical topological 
characteristic, as it indicates the dynamical feature of a node during 
information flow. Specifically, it considers the basic types of nodes in a 
directed graph: staring point, intermediate point and ending point. By 
comparing the time-averaged (ta) method with the integrated method, 
which directly analyzes the characteristics in 3D spatial pattern rather 
than analyzing them in each window and averaging the results, we 
validate the spatiotemporal synchronous change in connected nodes. 

Our study has several limitations. First, we relied solely on one 
dataset (HCP), and data from only one task. The purpose of this pilot 
study was to propose and validate a new model in a basic manner. 
Therefore, we deliberately chose to use this well-documented task from 
an open dataset. In future research, we will expand our validation by 
incorporating additional tasks and datasets. Secondly, the impact of 
parameters within the framework, such as window length, threshold 
with sparsity, and HRF, as well as the inclusion of other connectivity 
indices beyond temporal variability, and mutual corroboration with 
other hierarchical structures related to our novel dynamical hierarchy, 
were not thoroughly examined. We intend to address these limitations in 
future research. Thirdly, it would be beneficial to compare our methods 
with other approaches such as independent vector analysis, dFC, or 
multilayer networks. Fourthly, as the emerging activation and network 
studies in the brain white matter (Ji et al., 2023, 2017; Jiang et al., 
2022), it is crucial to investigate the influence of CAST, especially on the 
overlap rate and hierarchy of these spatial arrangements. 

5. Conclusion 

We presented a novel framework that can analyze the context- 
dependent, model-based, data-driven, dynamic large-scale modula
tions of effective connectivity during task performance. By introducing 
global null hypothesis for each PPI connection cross time-windows, 
conducting multi-comparison correction for testing the global null hy
pothesis, and employing the corrected thresholds to exclude the 
spurious connections in each time-window, we formalized these three 
processes as adopted global analysis and represented a hypothetical 
model as a series of spatiotemporal synchronous changes in connections 
that activated by specific task conditions. This model, referred to as 
Condition Activated Specific Trajectory (CAST), is validated through 
comparisons with intra-group consistency of individual spatial patterns 
of PPI connectivity, overall representational ability of temporal vari
ability and hierarchy, among four models that constructed by controlled 
the process of sparsification and calculation for temporal variability. 
Finally, the dynamic view afforded by the CAST model reflects the 
intrinsic nature of coherent brain activities. 
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