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Neuroimaging epicenters as potential sites of onset of 
the neuroanatomical pathology in schizophrenia
Yuchao Jiang1,2†, Lena Palaniyappan3,4,5†, Cheng Luo6,7,8, Xiao Chang1,2, Jie Zhang1,2,  
Yingying Tang9, Tianhong Zhang9, Chunbo Li9, Enpeng Zhou10, Xin Yu10, Wei Li11,  
Dongmei An11, Dong Zhou11, Chu-Chung Huang12,13, Shih-Jen Tsai14, Ching-Po Lin15,  
Jingliang Cheng16, Jijun Wang9, Dezhong Yao6,7,8, Wei Cheng1,2,17,18*,  
Jianfeng Feng1,2,18,19,20,21,22*, the ZIB Consortium‡

Schizophrenia lacks a clear definition at the neuroanatomical level, capturing the sites of origin and progress of 
this disorder. Using a network-theory approach called epicenter mapping on cross-sectional magnetic resonance 
imaging from 1124 individuals with schizophrenia, we identified the most likely “source of origin” of the structural 
pathology. Our results suggest that the Broca’s area and adjacent frontoinsular cortex may be the epicenters of 
neuroanatomical pathophysiology in schizophrenia. These epicenters can predict an individual’s response to 
treatment for psychosis. In addition, cross-diagnostic similarities based on epicenter mapping over of 4000 indi-
viduals diagnosed with neurological, neurodevelopmental, or psychiatric disorders appear to be limited. When 
present, these similarities are restricted to bipolar disorder, major depressive disorder, and obsessive-compulsive 
disorder. We provide a comprehensive framework linking schizophrenia-specific epicenters to multiple levels of 
neurobiology, including cognitive processes, neurotransmitter receptors and transporters, and human brain gene 
expression. Epicenter mapping may be a reliable tool for identifying the potential onset sites of neural patho-
physiology in schizophrenia.

INTRODUCTION
The pursuit of a neuroimaging signature for schizophrenia that can 
accurately diagnose the disorder, predict its long-term course, and 
map to expected treatment response has been ongoing for years (1, 
2). However, progress has been hindered by the lack of large sample 

sizes and high heterogeneity within the schizophrenia population, 
leading to inconsistent and unreliable results (3–6). For example, 
previous studies, including the Enhancing Neuro Imaging Genetics 
through Meta Analysis (ENIGMA) consortium’s efforts, have identi-
fied brain structural alterations in schizophrenia, but these alterations 
appear to be of modest effect size and are not specific to schizophrenia, 
overlapping notably with other neuropsychiatric disorders (7–10). 
A recent cross-disorder study reveals shared and disorder-specific 
neuroanatomical characteristics, such as increased volume of lateral 
ventricles in schizophrenia, bipolar disorder (BD), and major de-
pressive disorder, as well as smaller hippocampus volume in schizo-
phrenia and BD (11). Furthermore, several recent studies have indicated 
that structural brain alterations in schizophrenia is not uniform, as 
subtypes with varying degree of neuroanatomical changes, disease 
progression trajectories, and treatment outcomes exist within this 
diagnostic group (12–14). While functional magnetic resonance im-
aging (fMRI) has been suggested as a potential tool for discovering 
schizophrenia biomarkers (15), its reliability is disputed. Therefore, 
there is a need for robust neuroimaging methods and large datasets 
to identify reliable biomarkers for schizophrenia (16).

The aetiology and pathogenesis of schizophrenia is still not fully 
understood, but it is generally considered a network disorder or a 
disconnection syndrome (17, 18). Neuroanatomical abnormalities 
in schizophrenia, such as a thinner cortex and reduced volumes in 
brain structures like the hippocampus and thalamus, are present at 
the population level (10, 19). However, these differences do not occur 
simultaneously across all brain regions but rather follow a progres-
sive trajectory (20, 21). For instance, first-episode patients tend to 
show subtly thinner cortical thickness mainly in the frontotemporal 
lobes, while chronic patients show more pronounced reductions in 
the parietal and occipital cortices (20, 22). Individuals with psychotic 
experiences, genetic high risk, or clinical high risk show progressive 
gray matter reductions in the temporal and frontal lobes over time (23). 
Moreover, these reductions persist in those who remain symptomatic 
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or transition to psychosis (23). Longitudinal structural studies indi-
cate a pattern of limited amelioration, indicative of reorganization 
that may follow connectivity patterns of large-scale functional net-
works (24, 25). Patients with early-onset psychosis exhibit a more 
pronounced progressive loss of frontal gray matter over the initial 
years following the onset of the illness (26). One explanation for the 
increasing gray matter reduction seen over time is that the disease 
process that begins in a specific brain region, known as the “epicenter,” 
then spreads “transneuronally” to other brain regions facilitated by 
the underlying patterns of connectivity (27, 28). This connectivity-
based epicenter model has been successful in revealing the onset of 
disease in focal brain regions and accurately predicting the progres-
sion of neurophysiology in neurodegenerative diseases (27, 29).

Variations in connectional anatomy is now a well-known feature 
of human brain morphology (30). In schizophrenia, some of the in-
terindividual variations in the patterns of neuroanatomical abnor-
mality may occur because of either individual differences in the 
sites of origin per se (in which case, we may not be able to locate one 
or more regions as consistent epicenters) or variations in individual 
connectivity patterns, affecting the “transneuronal spread” despite 
shared anatomical origins. In this work, through robust quantitative 
assessment (31), we aim to contextualize the structural epicenters of 
schizophrenia based on gray matter morphometry (32, 33), with ex-
isting maps of human brain function (connectivity), cytoarchitecture 
(34), metabolism (35), neurotransmitter receptors and transporters 
(36), gene expression (37), and cognition-related activity (38). Our 
goal is to identify potential neuroimaging epicenters in schizophre-
nia and determine whether normative structural deviation across the 
epicenters can be used as a reliable magnetic resonance imaging (MRI) 
signature for the identification of schizophrenia and prediction of 
treatment response. If successful, this could ultimately help to target 
our enquiries on the pathophysiology of schizophrenia on a better-
defined phenotype than symptom-based descriptors (27).

In pursuit of this goal, we report sites of probable origin of neuro-
anatomical pathology of schizophrenia, using neuroimaging-derived 
connectivity-based epicenter mapping, in a discovery cohort of 
cross-sectional MRI from 2170 individuals (1124 patients with 
schizophrenia) and replicated this in an independent validation 
cohort. Furthermore, we investigated the diagnostic specificity of 
neuroimaging-derived epicenters in schizophrenia by comparing 
normative deviation patterns with 10 other overlapping neuropsy-
chiatric disorders. We systematically explored the associations of 
neuroimaging epicenters with clinical symptoms, gene expression 
in the human brain, neurotransmitter distributions, and expected 
functional activation for cognitive processes. Last, we examined 
the performance of neuroimaging-derived epicenters in predicting 
treatment response in a longitudinal follow-up sample. Our results 
indicate that the MRI-based epicenter mapping can be a reliable 
signature of the onset of pathophysiological changes specific to 
the diagnosis of schizophrenia and can be predictive of treatment 
response.

RESULTS
Experimental design
Figure 1 provides a flowchart of experimental design. First, this study 
detected the onset of neurophysiological pathology of schizophrenia 
by using a neuroimaging-derived, connectivity-based epicenter map-
ping algorithm based on only cross-sectional structural MRIs from 

1124 patients with schizophrenia (table  S1). To establish that the 
epicenter trait can be used as reliable biomarkers of schizophrenia, 
we performed exploratory analyses including that (i) examining the 
reproducibility of epicenter in another independent cohort; (ii) 
comparing the transdiagnostic specificity in more than 4000 indi-
viduals (table S2) diagnosed with schizophrenia, BD, major depres-
sion (MDD), obsessive-compulsive disorder (OCD), attention deficit 
hyperactivity disorder (ADHD), autism spectrum disorder (ASD), 
Parkinson’s disease (PD), mesial temporal lobe epilepsy (MTLE), 
mild cognitive impairment (MCI), or Alzheimer’s disease (AD); and 
(iii) mapping the specific psychiatric symptoms of schizophrenia 
with the degree of epicenter. Second, to offer a comprehensive cross-
disciplinary perspective of function and structure of epicenters, 
we linked the schizophrenia-specific epicenter distribution to (i) 
gray matter morphometric maps including longitudinal change 
of schizophrenia and ENIGMA-derived thinner–cortical thickness 
patterns; (ii) human brain gene expression profiles; (iii) positron 
emission tomography (PET)–derived whole-brain neurotransmitter 
receptor/transporter maps; and (iv) Neurosynth-derived meta-analytic 
task activation maps from 123 cognitive processes. Third, we examined 
whether epicenter traits predicted the short-term response to anti-
psychotic medications.

Neuroimaging epicenter distribution map in schizophrenia
Using cross-sectional structural MRI data, we derived each patient’s 
epicenter distribution map (see Methods) that quantified the goodness-
of-fit (GOF) score for a given region being an epicenter across whole 
brain. The region with a higher GOF score indicated higher proba-
bility being a candidate epicenter at the individual level. This statistical 
t map of epicenter provided a group-level degree of each region being 
a notable epicenter in 1124 individuals with schizophrenia (Fig. 2A). 
This epicenter t map indicated that areas involving insula, anterior 
cingulate, ventrolateral frontal cortex, and superior temporal cortex 
exhibited significantly higher degree across the whole brain, identi-
fied as notable epicenter regions after false discovery rate (FDR) cor-
rection (FDR P < 0.05) (Fig. 2B and table S3). We also characterized 
epicenter t map separately in schizophrenia subsamples differing in 
sex, illness stages, and age bins. There was no significant difference 
of epicenter distribution between female and male with schizophre-
nia after FDR correction (fig. S1). The notable epicenter regions in 
frontal and insular areas were replicated in a first-episode patient 
subgroup (fig. S2) and youth patient subgroups (fig. S3).

We further investigated the relationship between the epicenter 
degree pattern (i.e., epicenter t map) (Fig. 2A) and gray matter re-
duction pattern in schizophrenia (Fig. 2C). We found a significant 
spatial positive correlation between the epicenter degree pattern and 
cross-sectional smaller gray matter volume (GMV) patterns (i.e., case-
control difference) (r = 0.223, Pspin = 0.0004). Furthermore, epicenter 
degree pattern was also correlated with longitudinal gray matter 
reduction pattern (Fig. 2D) (i.e., percentage difference between base-
line and follow-up) in a longitudinal subsample (table S4) with 
12-week follow-up individuals with schizophrenia (r = 0.469, Pspin < 
0.00001) (Fig. 2E). Among the notable epicenter regions, the top 10 
regions with the highest degree were defined as the top epicenters 
(Fig. 2F). We found that at 12-week follow-up, the mean percentage 
in GMV reduction at the top epicenters was 2.2%, which was signifi-
cantly worse than epicenters (exclude top epicenters) (mean = 1.3%, 
t = 3.9, P = 0.00014) and nonepicenters (mean = 0.5%, t = 5.9, 
P < 0.00001) (fig. S4). The results indicate that regions with higher 
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Fig. 1. Experimental design and methodology of epicenter mapping. The connectivity-based patient-tailored epicenter mapping approach to identify the probable 
origin of neuroanatomical pathology of schizophrenia is depicted here. The top panel shows the overall research approach. Neuroimaging analyses were performed to 
characterize the identified epicenter’s reproducibility, diagnostic specificity, and association with psychiatric symptoms. Systematic studies of the association of changes 
in the epicenter with signatures of brain atrophy, gene expression, the spatial distribution of neurotransmitter systems, and cognitive function were carried out. We also 
examined the performance of epicenter mapping in predicting treatment outcomes in a longitudinal follow-up sample. The bottom panel shows the methodology of 
neuroimaging-derived, patient-tailored, connectivity-based epicenter mapping. (A) Neuroimaging data included cross-sectional MRI from 2170 individuals (1124 patients 
with schizophrenia). (B) MRI was processed using standard voxel-based morphometry (VBM), yielding voxel-wise gray matter volume (GMV). The GMV is adjusted by re-
gressing out the effects of gender, age, the square of age, total intracranial volume (TIV), and sites using a regression model. A gray matter mask is used to exclude non–
gray matter voxels. (C) The GMV is normalized relative to control population using z-score procedure. Higher z-score represents larger deviation from the normal (i.e., more 
severe atrophy in this case). (D) To characterize the epicenter for a given patient’s z-score map, spatial correlation is performed between the z-score map and each seed 
functional connectivity (FC) map derived from an independent healthy cohort [Human Connectome Project (HCP)]. Spearman correlation coefficients are calculated to 
quantify epicenter GOF score. The procedure generated M GOF scores corresponding to M candidate epicenter regions. (E) One sample t test is performed on the GOF 
score to determine significance of a candidate epicenter. The statistical t map represented inferred epicenter degree for the whole-brain M regions at group level.
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epicenter degree (i.e., more likely to be the origins) may predict pro-
nounced GMV reduction.

Using resting-state fMRI data of healthy controls from the Human 
Connectome Project (HCP) cohort (n = 1089, age = 28.8 ± 3.7 years, 
593 females), we derived a normative set of functional connectivity 
(FC) maps. The whole-brain FC pattern with the top epicenters as 
the seed is shown in Fig. 2G. We also observed a significant correla-
tion between the top epicenters’ FC pattern and longitudinal GMV 

reduction pattern (r = 0.328, Pspin < 0.00001) (Fig. 2H), demonstrating 
that brain regions with stronger connections to the top epicenters 
had more severe regional volume reduction. These findings suggested 
that the top epicenters may be the origins of neuroanatomical abnor-
mality and that pathophysiology may spread from epicenters through 
the inherent network patterns of the human brain.

As neuroanatomical abnormality is implicated in multiple diseases 
and disorders, we therefore examined whether the link of epicenter 

Fig. 2. Epicenter distribution and association with signatures of brain structure. (A) Characterization of epicenter distribution map across the whole brain. (B) Nota-
ble epicenters (FDR P < 0.05) and nonepicenter regions. (C) GMV reduction pattern from cross-sectional MRI data in schizophrenia (i.e., case-control difference). (D) Brain 
change pattern from a longitudinal subsample with 12-week follow-up (i.e., the percentage change between baseline and follow-up in schizophrenia). (E) A significant 
spatial correlation between epicenter degree pattern and longitudinal GMV reduction pattern (r = 0.469, P < 0.00001), indicating that regions with higher epicenter de-
gree (i.e., more likely to be the origins) have pronounced GMV reduction. (F) The top 10 regions with the highest epicenter degree were defined as the most likely epicen-
ters. (G) Whole-brain FC pattern with the top epicenters as the seed. (H) A significant correlation between the epicenters FC pattern and longitudinal GMV reduction 
pattern (r = 0.328, P < 0.00001) demonstrates that brain regions with stronger connectivity with the top epicenters have more severe longitudinal change.
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t map with neuroanatomical abnormality pattern is schizophrenia 
specific across different brain disorder. We separately estimated the 
relationship between the epicenter t map and ENIGMA-derived 
thinner–cortical thickness maps across eight neurological, neurode-
velopmental, and psychiatric disorders (see Methods). We observed 
the strongest relationship between the epicenter t map and the thinner–
cortical thickness pattern in the ENIGMA schizophrenia popula-
tion (r = 0.519, Pspin = 0.0036), compared to other brain disorders 
(Extended Fig. 1). The epicenter t map did not exhibit significant 
association with thinner–cortical thickness maps derived from other 
diseases or disorders (Pspin > 0.05) despite of a correlation with BD 
adults (r = 0.400, Pspin = 0.0091).

Reproducibility and robustness of epicenter 
distribution map
We calculated the epicenter t map in two independent cohorts of schizo-
phrenia (discovery sample, ncases = 1124; validation sample, ncases = 
147) and found significant consistency between the two results (r = 
0.280, Pspin < 0.001) (Extended Fig. 2). The highest epicenters still appear 
in the inferior frontal and adjacent frontoinsular-cingulate regions. We 
also verified the robustness of the epicenter distribution using a brain 
atlas with different parcels ranging from 68 to 600 parcels (Extended 
Fig. 3). These results demonstrated the reproducibility and robustness 
of the epicenter distribution in schizophrenia.

Epicenter mapping in neurological, neurodevelopmental, 
and psychiatric disorders
We performed epicenter mapping for individuals diagnosed with 
schizophrenia (ncases = 1124), BD (ncases = 101), MDD (ncases = 
1247), OCD (ncases = 80), ADHD (ncases = 344), ASD (ncases = 453), 
PD (ncases = 374), MTLE (ncases = 149), MCI (ncases = 370), and AD 
(ncases = 186). Figure 3A shows the group-level epicenter t map for 
each disorder. Spatial correlation analysis indicated that the epicen-
ter t map in schizophrenia spatially correlated with the epicenter t 
maps in BD (r = 0.276, Pspin = 0.0006), MDD (r = 0.172, Pspin = 
0.024), and OCD (r = 0.435, Pspin < 0.0001) (Fig. 3B). In addition, 
Fig.  3C shows the ranks of insular and frontal opercular regions 
(that were identified as the top epicenters in schizophrenia) across 
whole-brain regions (n = 254) according to their epicenter degree in 
each disorder. The rank of all brain regions according to epicenter 
degree in each disorder is shown in table S5. Wilcoxon rank sum test 
indicated significant differences in the rank of the top epicenters 
(shown in Fig.  3C) between schizophrenia and any of the other 
brain disorders (all Ps < 0.05). These results indicated that the re-
gions within the insular and frontal opercular cortex, which were 
identified as the top epicenters of schizophrenia, showed high speci-
ficity to only schizophrenia compared to BD, MDD, OCD, ADHD, 
ASD, PD, MTLE, MCI and AD, despite that schizophrenia also ex-
hibited a similar global pattern in the whole-brain level with MDD, 
OCD, and BD. As the disease data were from different cohorts/sites, 
we also performed epicenter mapping for their matched healthy in-
dividuals in each disease cohort. This epicenter mapping on healthy 
individuals from different sites can examine whether the epicenter 
differences across diseases are caused by cohorts/sites. Extended 
Figure 4 shows a similarity pattern across healthy individual’s epi-
center t maps from different cohorts/sites, suggesting that the epi-
center differences across diseases are not caused by a cohort/site 
effect. The insular and frontal opercular regions (i.e., top epicenters 
in schizophrenia) were not notable epicenters in healthy controls.

Associations between regional GOF score and symptoms 
in schizophrenia
We estimated the association of different symptoms of schizophrenia 
(positive, negative, and psychopathological symptoms) with the GOF 
score for each brain region (Fig. 4, A to C). We observed that these 
regions (50.0% belong to epicenters) that exhibited significant as-
sociation (P < 0.05, FDR correction) with positive symptoms were 
mainly located at the primary cortex, including the visual and senso-
rimotor cortex. The regions (22.6% belong to epicenters) that were 
associated with negative symptoms (P < 0.05, FDR correction) were 
mainly located at the higher-level cortices including the prefrontal, 
temporal, parietal, and association cortices. Within the epicenter 
top 10 regions, positive symptoms are mainly related to the regions 
belonging to the ventral attention network, while negative symptoms 
are mainly related to the regions belong to the default network (P < 
0.05, FDR correction) (Fig. 4D). Higher GOF score of the epicenter 
top regions (i.e., higher probability being a candidate epicenter) cor-
related with higher Positive and Negative Syndrome Scale (PANSS) 
positive score (r = 0.071, P = 0.027), higher general score (r = 0.089, 
P = 0.0075), and higher PANSS total score (r = 0.087, P = 0.0086) 
(Fig. 4E).

Association between epicenter and cortical gene expression
Using data from Allen Human Brain Atlas (AHBA) (37, 39), we ac-
quired brain-wide gene expression levels in the left hemisphere. 
Then, Partial Least Squares (PLS) regression (40) was used to examine 
the spatial association between epicenter t map and gene expression 
maps. The first two PLS components explained 43.4% of the variance 
(Fig. 5A) (Pspin = 0.006), which is interpreted as regional variations 
in the schizophrenia-related epicenter t map that are also captured 
in the transcriptional architecture of human cortex. Notably, we found 
that the first two PLS components (PLS1 and PLS2) were spatially 
correlated with the epicenter t map (PLS1: r = 0.44, Pspin = 0.003; 
PLS2: r = 0.55, Pspin < 0.0001; Fig. 5B). We ranked the genes according 
to their weights (i.e., Z scores of PLS loadings) to each PLS component 
by bootstrapping. The list of genes with an FDR P < 0.001 (both 
positive Z score and negative Z score) was extracted for enrichment 
analysis using Metascape (41) (Fig. 5C). Enrichment analysis revealed 
the top 20 significant gene ontology (GO) biological processes, such 
as “brain development,” “regulation of ion transport,” and “neuron 
projection development” (Fig. 5D). To further visualize the associa-
tions between the enriched terms, a subset of enriched terms have 
been rendered as a network plot using Cytoscape (42) (Fig. 5E).

Association between epicenter distribution and brain-wide 
neurotransmitter distribution
Neurotransmitter alterations are implicated in the pathophysiology 
of schizophrenia (43, 44). To examine whether schizophrenia epi-
center associated with neurotransmitter expressions, we investigated 
the spatial relationship between schizophrenia epicenter t map and 
19 neurotransmitter receptor/transporter density maps (including 
dopamine, norepinephrine, serotonin, acetylcholine, glutamate, γ-
aminobutyric acid (GABA), histamine, cannabinoid, and opioid), 
across nine different neurotransmitter systems (Extended Fig. 5A). 
We found that the epicenter t map in schizophrenia spatially correlated 
with the neurotransmitter density maps in acetylcholine [vesicular 
acetylcholine transporter (VAChT), r = 0.508, Pspin = 0.0010; α4β2, 
r = 0.371, Pspin = 0.0095], histamine [histamine H3 receptor (H3), r = 
0.413, Pspin = 0.0015], opioid [mu opioid receptor (MOR), r = 
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Fig. 3. Schizophrenia-specific epicenter. (A) Characterization of epicenter degree (t value) maps in additional neuroimaging datasets that included individuals diag-
nosed with BD, MDD, OCD, ADHD, ASD, PD, left MTLE (LMTLE), right MTLE (RMTLE), progressive MCI (PMCI), nonprogressive stable MCI (SMCI) and AD. (B) The epicenter 
degree map in schizophrenia was spatially correlated with the epicenter degree maps in the BD (r = 0.276, Pspin = 0.0006), MDD (r = 0.172, Pspin = 0.024), and OCD (r = 
0.435, Pspin < 0.0001) by Spearman correlation test. The asterisk represents one-tailed P < 0.05. (C) Ranks of insular and frontal opercular regions (that are identified as the 
top epicenters in schizophrenia) across whole brain regions (n = 254) according to their epicenter degree in each disorder. P values represent significant differences in the 
rank of the insular and frontal opercular regions between schizophrenia and each of the other brain disorders using the Wilcoxon rank sum test.
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0.408, Pspin = 0.0015], norepinephrine [norepinephrine transporter 
(NET), r = 0.385, Pspin = 0.0020] and glutamate [metabotropic glu-
tamate receptor 5 (mGluR5), r = 0.331, Pspin = 0.0140] (Extended 
Fig. 5B) after the multiple comparison correction (P < 0.05, FDR 
correction). Details are provided in table S6.

Association between epicenter distribution and cognitive 
function maps
We further investigated how the spatial distribution of epicenter 
corresponds to expected functional activation during known cognitive 

processes (table S7). We used PLS analysis (40) to determine the 
relationship between the Neurosynth-based cognitive function matrix 
and schizophrenia epicenter t map (Extended Fig. 6A). The PLS first 
component explained 33.9% of the variance (Pspin < 0.001), indicating 
a spatial pattern of cognitive functions (PLS1) and epicenter t map 
that together captured 33.9% of the covariance between the two 
datasets (Extended Fig. 6B). A significant spatial correlation was ob-
served between the PLS1 component and epicenter t map (r = 0.61, 
Pspin < 0.0001; Extended Fig. 6C). The cognitive terms were ranked 
by the Z scores of PLS loadings (a full list is provided in table S8). 

Fig. 4. Associations between regional GOF score and symptoms in schizophrenia. Brain regions whose GOF scores correlated to (A) positive symptoms, (B) negative 
symptoms, and (C) general symptoms are mapped to a brain template for visualization. The pie chart shows the proportion of these brain regions belonging to each 
resting-state network. (D) Association between the GOF score of each top epicenter and symptoms. Asterisk represents a significant correlation (P < 0.05, FDR correction). 
(E) Positive correlation between averaged GOF score of top epicenters and PANSS total score (r = 0.087, P = 0.0086). Cont, frontoparietal network; Default, default mode 
network; Limbic, limbic network; SalVentAttn, salience/ventral attention network; DorsAttn, dorsal attention network; Vis, visual network; SomMot, somatomotor net-
work; PANSS-P, PANSS positive subscale score; PANSS-N, PANSS negative subscale score; PANSS-G, PANSS general subscale score; PANSS-T, PANSS total score.
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We found that cognitive processes with the greatest positive loading 
are enriched for language processes such as “speech production” and 
“speech perception” (Extended Fig. 6D).

Prediction of short-term treatment outcomes using 
epicenter mapping
To investigate whether the baseline epicenter could predict antipsy-
chotic medication outcomes (i.e., PANSS reduction ratio) for a given 
patient, we tested a model to predict each patient’s outcome (Fig. 6A) 

in a longitudinal follow-up sample including 282 patients with 
schizophrenia (table  S4). First, epicenter mapping was performed 
for each baseline patient; the GOF scores of the top epicenters were 
extracted (Fig. 6B). To eliminate potential noises, principal components 
analysis (PCA) was used to purify the main components from the 
top epicenters GOF scores. Here, the first two principal components 
(PCs), which explained 96.9% of the variance of top epicenters’ GOFs 
(Fig. 6C), were used to train a support vector machine (SVM) regres-
sion model. By leave-one-individual-out cross-validation (LOOCV), 

Fig. 5. Gene expression profiles related to epicenter distribution map. (A) Using ENIGMA Toolbox, we obtained a matrix of transcriptional levels (100 regions × 9138 
gene expression levels) in the left hemisphere from the AHBA (http://human.brain-map.org). PLS regression was used to examine the spatial association between epicen-
ter distribution map (t values) and gene expression levels for all 9138 genes across the 100 regions within the left hemisphere. The first two PLS components explained 
43.4% of the variance (Pspin = 0.006). (B) The first two PLS components (PLS1 and PLS2) are spatially correlated with the epicenter distribution map. (C) By bootstrapping, 
genes are ranked according to their weights (i.e., Z scores) to each PLS component. The list of genes with an FDR P < 0.001 (both positive Z score and negative Z score) was 
extracted for enrichment analysis. (D) Top 20 significant GO biological processes by Metascape enrichment analysis. (E) Enrichment network visualization using Cyto-
scape. Each node represents an enriched term, where its size is proportional to the number of input genes included in that term, and its color represents its cluster iden-
tity (i.e., nodes of the same color belong to the same cluster).
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we predicted the value of the PANSS reduction ratio for each pa-
tient. We observed significant correlations between predicted values 
and actual values for PANSS positive score (r = 0.246, P= 0.00003; 
Fig. 6D) and PANSS total score (r = 0.187, P= 0.0016; Fig. 6E). We 
also validated the significant prediction performance by K-fold 
cross-validation procedures (K = 5 and 10) (table S9). This suggests 
that the top epicenters’ GOF scores could predict the symptom 
changes following antipsychotic medications. Furthermore, we further 
investigated the relationships between the PC and each top epicenter’s 
GOF score using Pearson’s correlation analyses. We found that the 
first PC (PC1) showed highly positive correlations with all top epi-
centers. The second PC (PC2) showed a positive correlation with the 
top epicenters belonging to the ventral attention network that in-
cludes the frontoinsular cortex, as well as negative correlations with 
the top epicenters belonging to the default mode network (Fig. 6F). 
In addition, we found that training the prediction model using features 

from all brain regions did not improve the correlation between pre-
diction values and actual values (Extended Fig. 7).

DISCUSSION
In this work, we first detected the onset sites of neuroanatomical pa-
thology in schizophrenia, using a patient-tailored connectivity-based 
epicenter mapping approach. Second, we established potential clinical 
applicability of epicenter mapping by verifying its specificity to 
schizophrenia against 10 other neurological, neurodevelopmental, 
or psychiatric disorders that are either differentials in diagnosis (BD 
and MDD), or comorbid (ADHD, ASD, and OCD) or share certain 
neurocognitive features (PD, MCI, and AD) with schizophrenia. Epi-
center mapping also has predictive value for short-term, symptom-level 
efficacy of antipsychotic treatment. Third, we demonstrate a neuro-
biological coherence of schizophrenia epicenters by demonstrating 

Fig. 6. Epicenter mapping-based prediction model predicts individual short-term symptom relief following antipsychotic medications in schizophrenia. 
(A) Flow diagram of the prediction analysis to predict individual PANSS reduction score following antipsychotic medications. (B) Top epicenters (i.e., the top 10 regions 
with highest degree at baseline) are displayed in a brain template. The GOF scores of the top epicenters within the patient’s epicenter map at baseline were extracted as 
features. (C) On the basis of the PCA, the first two PCs, which explained 96.9% of the variance of the top epicenters’ GOF scores, were used for building SVM prediction 
model. (D) There is a significant correlation between predicted values and actual values for the PANSS positive score (r = 0.246, P = 0.00003). (E) Significant correlation 
between predicted values and actual values for PANSS total score (r = 0.187, P = 0.0016). (F) Pearson’s correlations between each PC and top epicenters. *Bonferroni-
corrected P < 0.05.
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a relationship with downstream cognitive processes (especially lan-
guage), symptom domains (positive symptoms), and upstream neu-
rotransmitter receptor/transporter distribution (multiple systems, 
including acetylcholine and histamine) and gene expression maps. 
Together, our work systematically demonstrated that epicenters are 
reliable neuroimaging signatures grounded on key genetic, neuro-
chemical, neurocognitive, and psychopathological foundations of 
schizophrenia. An ideal use case for epicenter mapping approach 
will be to identify the patient-specific “origins” of pathophysiology 
of schizophrenia and to exploit this knowledge in providing prog-
nostic information to patients and their families.

Previous studies using epicenter methodology have successfully 
identified the possible initial region of neuroanatomical abnormality 
in neuropsychiatric disorders (28, 45) and neurodegenerative diseases 
such as frontotemporal dementia (29) and AD (46). However, they 
were based on group-level evaluation that assumed a common epi-
center for all patients, which have ignored between-patient variability. 
Using patient-tailored epicenter mapping, we estimate the epicenters 
with maximum likelihood of being the “source” sites with the most 
active pathophysiological process in 1024 individuals with schizo-
phrenia. The patient-tailored approach, which allows for anatomical 
heterogeneity within schizophrenia (3), enables the evaluation of 
epicenter likelihood at individual level through comparing the patient’s 
unique pattern of pathophysiology to brain regional connectivity 
pattern. Here, we found that regions with higher likelihood being 
epicenters had pronounced atrophy (the term “atrophy” here represents 
an infranormal measures in brain structural MRI in schizophrenia 
compared to the healthy control population rather than a cellular 
process of neuron-specific changes), which was further supported 
by another independent cohort including patients who exhibited 
subtle GMV reduction (~3%) at 3-month follow-up. It is crucial to 
emphasize that the atrophy in brain imaging in this study cannot be 
solely attributed to either disease itself progression or medication 
effects; rather, it is likely influenced by a combination of both factors. 
Furthermore, this study demonstrated that regions with stronger 
connections to the top epicenters (the first 10 regions with largest 
likelihood being the sites of onset) had more severe atrophy in 
schizophrenia, supporting our assumption that pathophysiology 
may spread from epicenters through the inherent network patterns 
of the human brain (28). Overall, these findings argue for the epi-
center mapping method being effective in identifying potential 
“sources of origin” and pathways of neuroanatomical spread of the 
neurobiological process in schizophrenia.

We determined that despite individual variations, the top epicen-
ters of schizophrenia are located at the inferior frontal and adjacent 
frontoinsular-cingulate regions, with this finding replicable in an-
other independent sample. While the role of antipsychotics in the 
effect of volume reduction cannot be ruled out on the basis of our 
design, the top epicenters with tissue reduction are more prominent 
in subsamples of patients with drug-naïve schizophrenia or minimal 
exposure to medications. These regions have been widely demon-
strated to contribute to a key neuropathological role of schizophre-
nia (47). The inferior frontal cortex, including the core portions of 
language regions (i.e., Broca’s area), supports the Crow’s linguistic 
primacy hypothesis in schizophrenia (48). The frontoinsular-cingulate 
epicenter, as the key node of salience network (49), supports the 
model of abnormal salience processing, in line with a triple-network 
model of schizophrenia (50). In addition, neuroanatomical atrophy 
within the top epicenters have been reported to happen before the 

first psychotic episode in individuals who later convert to psychosis 
(51, 52), further supporting the notion that the frontoinsular cortex 
plays a role as the site of “origin.” Together, the current epicenter 
mapping provides evidence for the Broca’s area and adjacent fronto-
insular cortex being the key sites of onset of the neuropathophysiology 
of schizophrenia.

Transdiagnostic pathophysiological processes assume special im-
portance in psychiatric disorders, as successfully intervening in such 
processes can have a broad impact for both prevention and treatment 
of severe mental illnesses (53). Our study investigates transdiagnos-
tic nature of the epicenter mapping in more than 4000 individuals 
diagnosed with schizophrenia, BD, MDD, OCD, ADHD, ASD, PD, 
MTLE, MCI, or AD. Here, we have demonstrated that the epicenter 
mapping successfully detects regions known to have high likelihood 
of being sites of onset in neurological disorders. For example, our 
data indicated that the top epicenters located at bilateral hippocampus 
for individuals diagnosed with AD or progressive MCI. For the 
patients with right MTLE, medial temporal regions within the right 
hemisphere were identified as the top epicenters. The location of epi-
centers was consistent with the classic lesions in neurological disorders 
(54–56), again confirming the validity of epicenter methodology. 
Applying this method to several neuropsychiatric disorders, we found 
that the schizophrenia-specific epicenter distribution was spatially 
related to other conventional psychiatric disorders OCD, BD, and 
MDD but not any of the neurological illnesses. The emergence of the 
insula and inferior frontal gyrus as epicenters was restricted only to 
schizophrenia but not to other disorders, including MDD, BD, and 
OCD. High specificity among some degree of transdiagnostic similarity 
suggested that while the epicenter mapping transcends categorical 
diagnostic criteria among severe mental illnesses, frontoinsular speci-
ficity highlights its specific utility for schizophrenia. Our longitudinal 
data further demonstrated that the epicenter status of the frontoin-
sular area at pretreatment phase could predict short-term outcomes 
of antipsychotic medications in schizophrenia.

In addition to clinical applicability, neurobiological interpretations 
of our findings are further discussed through systematically contex-
tualizing epicenters of schizophrenia with respect to cross-disciplinary 
reference maps, including cognitive maps, PET-derived neurotrans-
mitter maps, and gene expression maps. First, we found that the epi-
center distribution of schizophrenia is spatially correlated with a 
low-dimensional representation of cognitive processes, to which the 
greatest positive contributions are enriched at language processes. 
This is in line with our observation that the language region as the 
possible origin of neurophysiological pathology, supporting language 
hypothesis in schizophrenia (57, 58). Second, we found a robust spatial 
concordance between the epicenter distribution of schizophrenia 
and gene expression profiles of cerebral cortex. These genes whose 
expression patterns align with epicenters in schizophrenia are sig-
nificantly enriched in functional clusters with respect to neurodevelop-
ment processes in human brain (59). As epicenters are hypothesized 
as onset sites that propagate pathological processes to other areas 
they connect to (28), it is reasonable to speculate that the neuro-
physiological onset of illness may coincide with atypical neurodevelop-
mental processes in an affected individual (60). Third, we found a 
prominent link between the epicenter distribution in schizophrenia 
and neurotransmitter distribution patterns, supporting the idea that 
the neurophysiological change of schizophrenia depends on the un-
derlying chemoarchitecture (61). Collectively, our work goes beyond 
the traditional univariate associations and offers a comprehensive 
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insight on the anatomy of schizophrenia from multiple scales and 
levels of its neurobiology. This may provide a necessary step toward 
uncovering the complex aetiology of schizophrenia.

The present work should be considered alongside some method-
ological issues. First, we used the functional connectome because fMRI 
can better capture long-range connections among distributed brain 
networks, compared to diffusion-weighted MRI (DWI). Systematic 
false positives are also a defect for anatomical connectomes based on 
current DWI tractography algorithms (62). Furthermore, we took the 
group average connectome from a cohort of healthy individuals (n = 
1089) as the representation of intrinsic connectivity pattern, which is 
highly reliable across populations (63). Second, although sample size is 
an advantage of the current work, mixed data from sites may be af-
fected by confounding factors, such as different cohorts, scanners, and 
sites. Despite the large number of cross-sectional MRI data for schizo-
phrenia, larger longitudinal data with long-term follow-ups are needed 
to verify the predictive biomarkers to antipsychotic treatment. Third, 
some cross-sectional data were from chronic patients taking antipsy-
chotic medications over several years. Thus, the atrophy in brain imag-
ing, especially the generalized effects seen in nonepicenters, cannot be 
solely attributed to an active disease process alone, and additive or in-
teractive effects of medications and pathophysiology are equally likely. 
Forth, in methodology and image processing, the parameters setting is 
defined by arbitrary threshold, such as spatial smooth kernel and mask 
definition, which requires a priori experience.

In summary, our work reveals that schizophrenia-specific epi-
centers are most likely located at the Broca’s area and adjacent fron-
toinsular cortex. The presence of epicenters highlights the existence 
of a reliable objective neuroimaging marker with diagnostic specificity 
to schizophrenia and the ability to predict response to treatments 
for psychosis at an individual level. 

METHODS
Sample characteristics
Cross-sectional discovery sample
The discovery sample consisted of cross-sectional T1-weighted MRI 
scans from four hospitals including Shanghai Mental Health Centre 
(dataset no. 1), First Affiliated Hospital of Zhengzhou University 
(dataset no. 2), Taipei Veteran General Hospital (dataset no. 3), and 
Clinical Hospital of Chengdu Brain Science Institute in Chengdu 
(dataset no. 4) and from five publicly available datasets, i.e., COBRE 
(dataset no. 5), NMorphCH (dataset no. 6), FBIRN (dataset no. 7), 
NUSDAST (dataset no. 8), and DS000115 (dataset no. 9). A total of 1124 
patients with schizophrenia (479 females, age = 31.1 ± 12.8 years) 
and 1046 healthy controls (498 females, age = 32.6 ±  12.4 years) 
were included after data quality control (Supplementary Materials). 
Patients with schizophrenia were diagnosed according to the Diag-
nostic and Statistical Manual of Mental Disorders, 4th Edition 
(DSM-IV). Individuals were excluded from the study if they were (i) 
diagnosed with schizoaffective disorder, mood disorders, or other 
major medical or neurologic disorders; (ii) alcohol/drug dependence; 
(iii) had a history of electroconvulsive therapy within 6 months; and 
(iv) other contraindications to MRI scanning. Symptom severity 
was assessed with the PANSS for patients from datasets no. 1, no. 2, 
no. 3, no. 4, and no. 5, with the Brief Psychiatric Rating Scale for 
patients from dataset no. 8, or with the Scale for the Assessment of 
Positive Symptoms and Scale for the Assessment of Negative Symptoms 
for patients from datasets no. 6, no. 8, and no. 9. Detailed information 

of each cohort is provided in the Supplementary Materials and table S1. 
Written informed consent was obtained from all participants and/or 
their legal guardians. The Medical Research Ethics Committees of 
the local hospitals approved this study [ethics number: 2017-36R (da-
taset no. 1), 2018-KY-88 (dataset no. 2), YM105091F (dataset no. 3), 
CDFH2014030501 (dataset no. 4)].
Cross-sectional validation sample
The validation sample consisted of 147 patients with schizophrenia 
spectrum disorders (61 female, age = 38.0 ± 14.1) and 948 healthy con-
trols (409 female, age = 36.5 ± 14.8) from a publicly shared dataset—
SRPBS Multi-disorder MRI Dataset (https://bicr-resource.atr.jp/
srpbsfc/) (64). Patients with schizophrenia were diagnosed on the basis 
of the Structured Clinical Interview for DSM-IV Axis I Disorders-
Patient Edition. Ninety individuals have illness duration (mean 14.2 ± 
9.4 years) and medication information [chlorpromazine equivalents 
(CPZ): 581.1 ± 445.0 mg/day].
Multiple brain disorder samples
For our transdiagnostic analyses, we used MRI data from local hos-
pitals and publicly available datasets. Included neurological, neuro-
developmental, and psychiatric disorders comprised BD (ncases = 
101, ncontrols = 136), MDD (ncases = 1247, ncontrols = 1082), OCD 
(ncases = 80, ncontrols = 61), ADHD (ncases = 344, ncontrols = 519), ASD 
(ncases = 453, ncontrols = 476), PD (ncases = 374, ncontrols = 172), MTLE 
(ncases = 149, ncontrols = 48), and MCI (ncases = 370, ncontrols = 229), 
and AD (ncases = 186, ncontrols = 229). The demographic information 
is provided in table  S2. The MDD sample came from the REST-
meta-MDD consortium (http://rfmri.org/REST-meta-MDD) (65). 
The ADHD sample was obtained from the consortium of the In-
ternational Neuroimaging Datasharing Initiative (INDI) (http://
preprocessed-connectomes-project.org/adhd200/) (66). The ASD 
sample was acquired from the Autism Brain Imaging Data Exchange 
(ABIDE) initiative (http://fcon_1000.projects.nitrc.org/indi/abide/
abide_II.html). The PD sample came from the Parkinson’s Progression 
Markers Initiative (PPMI) (www.ppmi-info.org/) (67). The MCI and 
AD samples were obtained from the Alzheimer’s Disease Neuroim-
aging Initiative (ADNI) (https://adni.loni.usc.edu/). These samples 
were obtained from local hospitals and have been reported in pub-
lished studies for MTLE (68), OCD (69), and BD (70). We redirect 
the reader to the previous publications for more details on demo-
graphic information or medications. The Medical Research Ethics 
Committees of the local hospitals approved this study.
Longitudinal sample
A total of 282 patients with schizophrenia, from two hospitals 
(Shanghai Mental Health Center, ncases = 180; Peking University 
People’s Hospital, ncases = 102), treated with antipsychotic medication 
were included in the longitudinal observational analyses (table S4). All 
individuals met DSM-IV diagnostic criteria for schizophrenia, and 
no other comorbid Axis I disorders. Inclusion and exclusion criteria 
of individuals are provided in our previous study (22). At baseline, 
260 of them were treatment-naïve first-episode schizophrenia. Fol-
lowing baseline MRI, patients received antipsychotic medications. 
Two hundred twenty-eight of 282 received monotherapy: amisul-
pride (n = 19), aripiprazole (n = 52), blonanserin (n = 1), clozapine 
(n = 2), olanzapine (n = 68), paliperidone (n = 11), paliperidone 
palmitate injection (n = 4), quetiapine (n = 2), risperidone (n = 67), 
and ziprasidone (n = 2). Fifty-four received combined therapy (two 
or more antipsychotic drugs). The daily dosage of drugs was converted 
to CPZ. The mean CPZ during medication was 375.1 ± 241.0 mg/
day. The severity of symptoms was evaluated on the basis of PANSS 
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administered by the same psychiatrist in each patient. Symptom re-
lief indicated in PANSS total and subscale scores [reduction ratio = 
(baseline − follow-up)/baseline × 100% (71)] were used to measure 
the treatment response. The average duration of PANSS follow-up to 
estimate the treatment response was 10.7 weeks.

Neuroimaging acquisition and preprocessing
High spatial-resolution T1-weighted MRI acquisition protocol for 
each cohort has been described previously (21, 22, 72–77). Images 
were processed by the Computational Anatomy Toolbox (www.neuro.
uni-jena.de/cat/). A fully automated procedure for standard voxel-
based morphometry (VBM), including spatial registration, tissue 
segmentation, and bias correction of intensity nonuniformities, was 
conducted. The resulting modulated gray matter images were smoothed 
with an 8-mm full width at half maximum Gaussian kernel.

Determination of individual patient gray matter reduction 
z-score map
We derived voxel-wise GMV using VBM for all individuals. The 
GMV for each voxel was then adjusted by regressing out the effects 
of gender, age, the square of age, total intracranial volume (TIV), 
and sites using a regression model. Figure S5 shows that the site ef-
fect has been successfully removed from the adjusted GMV values 
by comparing site difference in healthy controls. Subsequently, a 
gray matter mask was used to exclude non–gray matter voxels. For 
everyone with schizophrenia, the adjusted GMV values were nor-
malized relative to the control population using the z-score proce-
dure (27), which created voxel-wise individualized maps of gray 
matter reduction. The z-score represents the severity of an abnor-
mality for a voxel, in this case MRI-derived GMV. Higher z-score 
represents larger deviation from the normal (i.e., a smaller GMV in 
this case). As the goal of the current study is to detect the potential 
epicenter of gray matter reduction, inclusion of all voxels, regardless 
of whether it is “abnormal” or not, may reduce sensitivity of detec-
tion. To eliminate the bias of some voxels with subthreshold reduc-
tion, we made a spatial mask for each patient by using a threshold 
greater than 0.5 of GMV z-score; thus only voxels showing >0.5 z-
score deviations were considered for epicenter mapping. Figure S6 
shows how many voxels were included per individual for epicenter 
mapping. We also evaluated the consistency in using different z-
score thresholds (fig. S7).

Characterization of 'disease epicenter map' in schizophrenia
To identify potential disease epicenter of neuroanatomical abnor-
mality, we performed patient-tailored connectivity-based epicenter 
mapping of schizophrenia (Fig. 1). We hypothesized that an epicen-
ter would be a region with severe GMV reduction whose intrinsic 
connectivity pattern most strongly resembled the patient’s GMV 
reduction pattern (27). First, we derived a normative set of func-
tional connectomes from a large cohort of health control from HCP 
cohort (n = 1089, age = 28.8 ± 3.7 years, 593 females). We used a 
whole-brain parcellation composed of 200 cortical (78) and 54 sub-
cortical regions (79) (Supplementary Materials). We also verified 
the robustness of the results using brain atlases with different parcels 
ranging from 68 to 600 parcels (78, 80–83). Using the resting-state 
fMRI data from the 1089 healthy individuals, each of 254 regions 
was used as the seed region to compute the Pearson’s correlation 
coefficient with other voxels, generating a seed-based intrinsic FC 
map. The seed-based voxel-wise FC map was transformed to FC z 

map by Fisher’s r-to-​z transformation. One sample t test was per-
formed on all individuals’ FC z maps to obtain group-level statistical 
parametric FC t map. We then ran a spatial correlation analysis be-
tween each of these 254 voxel-wise FC t maps with the gray matter 
reduction z-score map from each patient to detect patient-specific 
candidate epicenters, whose FC pattern best explained the observed 
pattern of GMV reduction (27). Spearman correlation coefficient 
was calculated and further transformed to Fisher’s z-score to quan-
tify epicenter GOF score. The procedure generated 254 GOF scores 
corresponding to 254 candidate epicenter regions. The seed region 
with a higher GOF score represents higher probability of being a 
candidate epicenter. One sample t test was performed on the GOF 
score to determine the significance of candidate epicenters. The re-
sulting statistical t map represented inferred epicenter degree for the 
254 regions across the whole-brain at a group level. Multiple com-
parison correction was performed using FDR.

Associations between epicenter signature and GMV 
reduction pattern
To investigate the relationship between epicenter signature and GMV 
reduction pattern in schizophrenia, we conducted spatial association 
analyses in a longitudinal cohort including 148 patients with schizo-
phrenia who had both MRI scans at baseline and 12-week follow-up. 
The longitudinal GMV reduction map was measured as the ratio in 
the change of GMV maps between the baseline and the follow-up. 
Spearman correlation between epicenter t map and longitudinal 
GMV reduction map was performed. To examine whether brain ar-
eas with stronger connections to the epicenter had more severe GMV 
reduction, we calculated the whole-brain FC t map with the top epi-
centers as the seed. Spatial correlation between the longitudinal 
GMV reduction map and the top epicenters’ FC map was conducted. 
Spatial autocorrelation-preserving permutation tests, termed “spin 
tests,” were used to correct for potential confounding effects of spatial 
autocorrelation (https://github.com/frantisekvasa/rotate_parcella-
tion) (version 3, June 2022) (84, 85) (Supplementary Materials).

Links between epicenter signature and ENIGMA disease 
brain maps
To examine whether the link of epicenter signature with GMV reduc-
tion pattern in schizophrenia is specific across different brain disorders, 
we estimated the spin-corrected spatial correlation between the epi-
center t map of schizophrenia (that is derived from our discovery 
sample) and ENIGMA-derived thinner–cortical thickness maps, in-
cluding eight neurological, neurodevelopmental, and psychiatric dis-
orders. ENIGMA summary statistics of thinner–cortical thickness 
map (i.e., effect sizes for case-control differences in cortical thickness 
across whole brain regions) were obtained from ENIGMA toolbox 
(https://github.com/MICA-MNI/ENIGMA) (version 2.0.0, July, 
2022). All cortical thickness maps were collected from more than 
17,000 scanned patients against almost 22,000 controls, comprising a 
total of eight neurological, neurodevelopmental, and psychiatric dis-
orders including 22q11.2 deletion syndrome (22q) (86), ADHD (9), 
ASD (87), idiopathic generalized epilepsy, right and left temporal 
lobe epilepsy (88), depression (7), OCD (89), schizophrenia (19), and 
BD (8). FDR correction was used for multiple comparison corrections.

Epicenter characterization in multiple brain disorders
To examine whether the epicenter in schizophrenia exhibits diagnostic 
specificity compared with other brain disorders, we characterized 
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the epicenter t maps from more than 4000 individuals diagnosed 
with either schizophrenia (ncases = 1124, ncontrols = 1046), BD (ncases 
= 101, ncontrols = 136), MDD (ncases = 1247, ncontrols = 1082), OCD 
(ncases = 80, ncontrols = 61), ADHD (ncases = 344, ncontrols = 519), ASD 
(ncases = 453, ncontrols = 476), PD (ncases = 374, ncontrols = 172), MTLE 
(ncases = 149, ncontrols = 48), MCI (ncases = 370, ncontrols = 229), and 
AD (ncases = 186, ncontrols = 229). The demographic information is 
provided in table S2. One sample t test was performed to characterize 
the epicenter degree map at the group level for each disease/disorder. 
To examine the similarity in the global pattern of epicenter t map 
between schizophrenia and each of the other disorders, Spearman 
correlation test was used to investigate the spatial correlation of epi-
center t map between schizophrenia and each of the other disorders. 
To examine whether schizophrenia had specific epicenters compared 
with other disorders, we further ranked the brain regions according 
to their epicenter degree in each disorder. Wilcoxon rank sum test 
was further used to examine the significant differences in the rank of 
the top epicenters (the first 10 regions with the highest epicenter degree 
in schizophrenia, which were derived from the discovery sample) 
between schizophrenia and each of the other brain disorders. FDR 
correction was used for multiple comparison corrections.

Associations between the GOF score and specific symptoms 
in schizophrenia
To investigate the relationship between specific symptoms and GOF 
for each region in schizophrenia, we mapped specific symptoms in 
schizophrenia to the whole brain by regional-wise correlation analysis 
between the regional GOF score and PANSS positive, negative, and 
general subscale scores. In addition, we further explored the rela-
tionship between the mean GOF score within the top epicenters and 
specific symptoms in schizophrenia. FDR correction was used for 
multiple comparison corrections.

Correlation analysis between epicenter and 
gene expressions
Brain-wide gene expression profiles were acquired from the AHBA 
(http://human.brain-map.org). The ENIGMA Toolbox (https://enigma-
toolbox.readthedocs.io/en/latest/index.html) (version 2.0.0, July 2022) 
(90) provides brain-wide microarray expression data collected from 
AHBA. Microarray expression data were first processed using abagen 
(91). As the AHBA dataset had only two right hemisphere data, only 
regions within left hemisphere (n = 100) were extracted using the 
same atlas (i.e., Schaefer parcellation) with the epicenter t map. In 
addition, genes whose similarity across donors fell below a thresh-
old (r < 0.2) were further removed, leaving a total of 9138 genes for 
following analysis. PLS regression (40) was used to examine the spa-
tial association between epicenter t map and gene expression levels 
for all 9138 genes across the 100 regions within the left hemisphere. 
Permutation testing was applied to test the null hypothesis that PLS 
components explained no more covariance between the epicenter t 
map and brain-wide gene expression than expected by chance. Spin 
tests were also considered for correcting spatial autocorrelation 
(Supplementary Materials). Z scores and corresponding P values 
estimated by Bootstrapping were used to rank genes according to 
their contribution to each significant PLS component (92). The list 
of genes with an FDR P < 0.001 was extracted for enrichment analy-
sis. Gene enrichment analysis was performed using Metascape (41) 
(https://metascape.org/gp/index.html#/main/step1). The genes list 
generated from PLS analysis was input into the Metascape analysis. 

The threshold was set at q value = 0.01 using the Benjamini-
Hochberg procedure to account for multiple testing (93). Details are 
provided in the Supplementary Materials.

Correlation analysis between epicenter and 
neurotransmitter distribution
We further investigated the association between epicenter t map and 
neurotransmitter distribution maps (details are provided in the Sup-
plementary Materials). A comprehensive cortical profile of neurotrans-
mitter receptor densities was previously obtained from PET images of 
more 1200 healthy individuals across multiple studies (https://github.
com/netneurolab/hansen_receptors) (version 1, July, 2022). A total of 
19 different neurotransmitter receptors and transporters maps, across 
nine different neurotransmitter systems, including dopamine, norepi-
nephrine, serotonin, acetylcholine, glutamate, GABA, histamine, 
cannabinoid, and opioid, were obtained and then parcellated to 200 
regions (only cortical regions are available) using the same atlas with 
the epicenter t map. To examine the spatial association between epi-
center distribution and neurotransmitter distribution, we estimated 
the Spearman correlation between the epicenter t map of schizophre-
nia and the individual neurotransmitter receptor/transporter density 
map. Spin tests were used to correct the spatial autocorrelation. 
Multiple comparisons were corrected by FDR.

Correlation analysis between epicenter and 
cognitive functions
We further investigated how the spatial distribution of epicenter 
correspond to cognitive processes. Neurosynth (https://github.com/
neurosynth/neurosynth) (version 1, July 2022), a meta-analytic tool 
that synthesizes results from more than 15 000 published fMRI stud-
ies, was used to derive meta-analytic task activation maps, which 
provide a quantitative representation of how specific brain regions 
are activated during multiple tasks (38) (Supplementary Materials). 
A total of 123 cognitive terms (table S7) were selected from Cogni-
tive Atlas, a public ontology of cognitive science (94) including a 
comprehensive list of neurocognitive processes. We parcellated the 
activation maps into the same 254 region atlas used for epicenter t 
map, resulting a region × cognitive function matrix. Then, we used 
PLS analysis (40) and permutation testing to examine the associa-
tion between cognitive function matrix and epicenter t map. Spin 
tests were used to correct the spatial autocorrelation. Boostrapping 
was used to calculate the Z scores and rank the cognitive terms ac-
cording to their contribution to significant PLS component.

Individual-level prediction to short-term treatment 
outcomes using epicenter mapping
To investigate whether the baseline epicenters could predict treat-
ment outcomes following short-term antipsychotic treatment for a 
given patient, we built a prediction model to predict each patient’s 
symptom relief (i.e., PANSS reduction ratio) in a longitudinal follow-
up cohort including 282 patients with schizophrenia who were treat-
ed with antipsychotic medications for an average of 10.7 weeks. 
Figure 6A shows the flow diagram of the prediction analysis. We ap-
plied LOOCV to obtain training set and test set. In each LOOCV, 
one individual was used as a test set, and the remaining individuals 
were used as a training set. In training set, the baseline GOF scores 
of the top epicenters (i.e., the top 10 regions with the highest GOF 
derived from the discovery sample) were extracted as features. To 
eliminate potential noises, we performed a PCA on GOF scores to 

D
ow

nloaded from
 https://w

w
w

.science.org on A
ugust 06, 2024

http://human.brain-map.org
https://enigma-toolbox.readthedocs.io/en/latest/index.html
https://enigma-toolbox.readthedocs.io/en/latest/index.html
https://metascape.org/gp/index.html#/main/step1
https://github.com/netneurolab/hansen_receptors
https://github.com/netneurolab/hansen_receptors
https://github.com/neurosynth/neurosynth
https://github.com/neurosynth/neurosynth


Jiang et al., Sci. Adv. 10, eadk6063 (2024)     12 June 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

14 of 18

purify the main components, which were further used to train a 
SVM regression model to predict PANSS reduction ratio at follow-
up. The test set patient’s PANSS reduction ratio was predicted based 
on the built SVM regression model. Last, we used the Pearson’s cor-
relation to determine whether the predicted value is correlated with 
the actual value. In addition, to determine whether the GOF scores 
of the top epicenters would predict symptom relief better than other 
regions, we also used the prediction analysis using GOF scores from 
all brain regions. We also validate the prediction performance by using 
5- and 10-fold cross-validation procedures (Supplementary Materials).

Supplementary Materials
This PDF file includes:
ZIB (Zhang-jiang International Brain Bank) Consortium Authorship List
Methods S1 to S7
Extended Figs. 1 to 7
Figs. S1 to S7
Tables S1 to S9
Legend for data S1
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