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Abstract—Available evidence suggests that dynamic 
functional connectivity can capture time-varying 
abnormalities in brain activity in resting-state cerebral 
functional magnetic resonance imaging (rs-fMRI) data and 
has a natural advantage in uncovering mechanisms of 
abnormal brain activity in schizophrenia (SZ) patients. 
Hence, an advanced dynamic brain network analysis 
model called the temporal brain category graph 
convolutional network (Temporal-BCGCN) was employed. 
Firstly, a unique dynamic brain network analysis module, 
DSF-BrainNet, was designed to construct dynamic 
synchronization features. Subsequently, a revolutionary 
graph convolution method, TemporalConv, was proposed 
based on the synchronous temporal properties of features. 
Finally, the first modular test tool for abnormal 
hemispherical lateralization in deep learning based on rs-
fMRI data, named CategoryPool, was proposed. This study 
was validated on COBRE and UCLA datasets and achieved 
83.62% and 89.71% average accuracies, respectively, 
outperforming the baseline model and other state-of-the-
art methods. The ablation results also demonstrate the 
advantages of TemporalConv over the traditional edge 
feature graph convolution approach and the improvement 
of CategoryPool over the classical graph pooling approach. 
Interestingly, this study showed that the lower-order 
perceptual system and higher-order network regions in the 
left hemisphere are more severely dysfunctional than in 
the right hemisphere in SZ, reaffirmings the importance of 
the left medial superior frontal gyrus in SZ. Our code was 
available at: https://github.com/swfen/Temporal-BCGCN. 

 
Index Terms—Dynamic functional connectivity, graph 

pooling, hemispherical lateralization, rs-fMRI, 
schizophrenia, temporal graph convolution. 

I. INTRODUCTION 

urrently, artificial intelligence methods that assist in 
diagnosing schizophrenia (SZ) are a critical research 
focus in the field of clinical medicine for psychiatric 

disorders [1-3]. Severe behavioral dysfunction is common 
among SZ patients, with a lifetime prevalence of 
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approximately 1% [4] and a shorter life expectancy of about 
15 years compared with the general population [5]. 
Concurrently, the diagnosis and treatment of SZ are arduous 
because a wide range of brain dysfunctions, in perception, 
thinking, emotion, and behavior, are involved. Resting-state 
functional magnetic resonance imaging (rs-fMRI) [6], is a non-
invasive medical imaging technique that measures fluctuations 
of blood oxygen level (BOLD) signals in various regions of 
interest (ROIs) of the brain. The rs-fMRI has been used to 
study abnormal functional connectivity patterns in SZ patients 
[7-12]. Although previous studies have used computerized 
methods to analyze rs-fMRI data, there are still some 
difficulties in the development of computer-aided diagnostic 
techniques for SZ. They include problems in utilizing rs-fMRI 
data to the maximum extent to construct complex brain 
networks, better extracting features from the networks, and 
further exploring potential functional anomalies in the brains 
of individuals with SZ. 

The activity of nodes and connectivity patterns in the brain 
network change over time [13], posing challenges in 
understanding advanced cognitive abnormalities in patients 
with psychiatric illnesses. Existing studies have shown that 
brain activity is always in a dynamic pattern of neural activity, 
and it is believed that dynamic functional connectivity (dFC) 
analysis can reveal temporal dynamics changes masked by 
static functional connectivity (sFC) [14, 15]. Therefore, the use 
of dFC to describe the state of brain network activity has 
attracted research interest in the classification and analysis of 
psychiatric disorders [16-20]. The dFC analysis uses a sliding 
window to slice the rs-fMRI data into multiple time segments, 
providing a new way to explore the dynamic mechanisms of 
brain activity further. Lin et al. [21] proposed a convolutional 
recurrent neural network (CRNN) for extracting high-level 
features of the dFC network and implementing classification. 
Ramirez-Mahaluf et al. [22] found a temporal disorganization 
of dFC in the brains of patients with first-episode psychosis. 
Most studies have explored the dynamic patterns of change in 
brain networks using the dFC mechanisms but have not fully 
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mined the implied synchronization trends between brain 
regions. 

Graph neural networks (GNNs) extend deep learning (DL) 
methods to non-Euclidean domains to extract and aggregate 
feature information in graph-structured data more effectively, 
showing superior performance in the SZ classification. Lei et 
al. [23] used a graph convolutional network (GCN) to extract 
features from rs-fMRI data to reveal abstract and complex 
relationships within brain networks and identify topological 
abnormalities in the functional networks of SZ patients. Chang 
et al. [24] applied a GNN to learn the topology of brain 
networks in the source space to better capture the complex 
relationships involved in the mismatch negativity 
(electrophysiological indicator) in the electroencephalography 
of SZ patients. In this study, we found that most of the edge 
vector graph convolution methods, represented by Edge-
Conditioned Convolution (ECConv) [25], disrupt the temporal 
construction of node and edge features during the convolution 
of traditional GNNs when applied to brain time series data. 
This disruption may degrade the classification performance of 
the model. 

Some studies have found that SZ patients may have 
hemispheric lateralization abnormalities [7,26] and disruptions 
to the mutual coordination of left and right hemisphere 
functions of the brain [27, 28]. Owing to the essential role of 
pooling operations in the network structure, the use of pooling 
to verify brain lateralization abnormalities in SZ patients has 
become a topic of research interest. To further exploit the latent 
relationships among nodes, some studies clustered the nodes 
during pooling and then selected the nodes based on class 
clusters, where the selection was often data-driven. Yuan et al. 
[29] proposed a graph pooling technique that assigns nodes 
with similar features to the same class clusters and uses them 
for the prediction task of the graph structure. Gopinath et al. 
[30] introduced a learnable pooling strategy with a difference 
pooling technique to split the network into two separate paths, 
one for computing the latent features of nodes and the other for 
clustering the features into node class clusters. However, to 
verify the presence of abnormal lateralization in SZ patients, it 
is often necessary to divide the brain regions in the left and 
right hemispheres into two clusters according to prior 
knowledge. Existing graph clustering pooling strategies are 
limited in this case as they cannot target potential functional 
abnormalities in the left and right hemispheres of SZ patients.  

To address these limitations, an advanced GCN 
improvement model based on dynamic brain network analysis, 
the temporal brain category graph convolutional network 
(Temporal-BCGCN), was proposed. Firstly, the dynamic 
synchronous functional brain network (DSF-BrainNet) with 
temporal dynamic synchronous properties was built using a 
sliding window technique to obtain information about nodes in 
brain regions and the interrelationships between nodes. 
Secondly, the proposed TemporalConv enables the 
convolution process to adapt to the dynamic synchronization 
rule in DSF-BrainNet. Finally, the pooling strategy 
CategoryPool was employed in the pooling layer of GCN to 
improve the accuracy of SZ classification and investigate 
further hemispheric lateralization abnormalities in SZ patients.  

The main contributions of this paper can be summarized as 

follows:  
1) A unique dynamic brain network analysis module, DSF-

BrainNet, is proposed. DSF-BrainNet brings new perspectives 
for understanding further the dynamic fluctuation patterns of 
various brain regions over time. This module was used as the 
input for the GCN. 

2) A revolutionary convolutional method called 
TemporalConv is presented. TemporalConv convolves the 
features of the rs-fMRI data obtained from each time slice 
independently. The original concept of temporal convolution 
provides a new reference for subsequent researchers 
performing graph convolution on rs-fMRI and other temporal 
data. 

3) A novel pooling strategy called CategoryPool is proposed. 
In rs-fMRI research, CategoryPool is the first modular 
hemispheric lateralization abnormalities test tool used for DL. 
This method has strong generalization and can be transferred 
to other medical research fields.  

II. DATASETS AND PREPROCESSING 

Two public datasets were selected for model evaluation, 
ablation and lateralization analysis in this study: the Center for 
Biomedical Research Excellence (COBRE) dataset [31] and 
the University of California Los Angeles (UCLA) dataset [32], 
with the following sources and corresponding preprocessing. 

The COBRE dataset was obtained from the Center for 
Biomedical Research Excellence, which selected rs-fMRI 
images of 112 subjects as data, including 48 SZ patients and 
64 healthy controls (HC). Informed consent was obtained from 
each subject in accordance with the COBRE Office of Human 
Research Protections. The UCLA dataset was obtained from 
the UCLA Consortium for Neuropsychiatric Phenomics LA5c 
Study, which selected rs-fMRI images of 80 subjects as data, 
including 41 SZ patients and 39 HC. All subjects gave written 
informed consent in accordance with procedures approved by 
the UCLA Institutional Review Board. In addition, subjects 
with a diagnosis of a neurological disorder, mental retardation, 
severe head trauma, substance abuse, or dependence within the 
previous 12 and six months were excluded from the 
aforementioned two datasets, respectively.  

The preprocessing of resting-state functional data was 
performed using the DPABI toolbox [33]. The first 10 volumes 
were removed for signal equilibrium and allowed the 
participants to adapt to the scanning noise. The preprocessing 
pipeline included the following steps: (1) Slice-time correction 
(to correct for temporal shifts of different slices). (2) 
Realignment to the mean functional image using a trilinear 
interpolation with degrees of freedom. (3) Normalization to the 
standard EPI template and resampling to 3 × 3 × 3 mm3 voxels. 
(4) Nuisance signals were regressed out, including the linear 
trend, 24-parameter motion correction, mean white matter, and 
cerebrospinal fluid signals. The 24 motion parameters included 
six rigid-body motion parameters (x, y, and z translations and 
rotations) and their values at the previous time point and the 
12 corresponding squared values [34]. The global signal was 
not regressed because a recent excellent study demonstrated 
that an altered global brain signal was observed in patients with 
schizophrenia, which may underlie profound alterations in the
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Fig. 1.  Overall flowchart of the Temporal-BCGCN Architecture. (a) rs-fMRI. (b) BOLD Signal Series. (c) DSF-BrainNet. (d) TemporalConv. (e) 

CategoryPool. 
 
neural information flow in patients with SZ, regressing out the 
global mean signal can distort between-group comparisons of 
inter-regional correlation [35]. (5) After removing the 
potentially confound signals using averaged brain tissue time 
series and estimated head motion signals in the multiple 
regression model, the residuals were band-pass filtered (0.01–
0.08 Hz) to further suppress low-frequency drifts and 
physiological noises such as breathing and heartbeat. (6) They 
were smoothed using a Gaussian kernel (FWHM = 8 mm). 
Finally, dimensionality reduction was implemented by 
parcellating the brain into 90 functionally defined ROIs from 
the automated anatomical labeling (AAL-90) [36] atlas, 
extracting the smoothed BOLD time series from these regions. 

III. METHODS 

A. Overview of Temporal-BCGCN Architecture 

In this study, an advanced Temporal-BCGCN model was 
proposed for classification and brain function lateralization 
analysis of SZ patients. The structural framework is illustrated 
in Fig. 1. 

Fig. 1(a) shows the brain rs-fMRI data of N subjects. The 
brain data of N  subjects are entered into the AAL template, 
and each subject is given the corresponding BOLD signal on 
each of the n  ROIs to obtain the N  sets of datasets in (b), 
where each set contains the BOLD signal sequence of the n
ROIs. The horizontal coordinates of the BOLD signal in Fig. 
1(b) represent the time variation, the vertical coordinates 
represent the BOLD signal values, and the oscillating dashes in 
each color represent the specific BOLD signal values for each 
ROI at the corresponding time points. The BOLD signal in Fig. 

1(b) is processed using a sliding window technique to obtain the 
time slices in Fig. 1 (c), and the node features and edge features 
are calculated for each time slice. In particular, in Fig. 1(c), we 
propose the DSF-BrainNet module to construct a temporally 
synchronized feature brain network. First, we used the sliding 
window technique to divide the temporal signals of each subject 
into partially overlapping time slices. Then the signals of ROIs 
within each time slice were analyzed using the slide piecewise 
aggregation (SPA) technique to construct the graph node 
features. The Pearson correlation coefficient (PCC) between 
two ROIs within each time slice was calculated to construct the 
graph edge features. Using a graph node as an example, the 
feature values computed for each time slice represent the 
individual components of the feature vector associated with that 
node. The entire feature vector is constructed by concatenating 
these components in a chronological sequence. The process of 
constructing the edge features follows a procedure similar to 
that described above. (For specific details, refer to Section 
III.B.1 or III.B.2). Subsequently, the brain feature graphs 
constructed in Fig. 1(c) were fed into Fig. 1(d), the 
TemporalConv operation. We set up m  independent 
convolution paths according to the number of time slices such 
that nodes and edge features under different time slices were 
signaled in independent paths, ensuring that the synchronous 
timing properties in DSF-BrainNet were not destroyed during 
the convolution process. In addition, the convolution module 
was run twice in succession. The aggregated feature graphs 
obtained in Fig. 1(d) were then fed into Fig. 1(e), where the left 
and right hemisphere nodes were set to Categories A and B, 
respectively. After determining the total number of nodes   to 

be retained in the pooling, the corresponding abnormal 
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propensity parameters A  and B  were set to control the 

proportion of nodes retained in the left and right hemispheres, 
respectively. Finally, the pooled brain maps were fed into the 
multi-layer perceptron (MLP) to obtain the classification results. 
The optimal model values of A  and B  were determined 

through multiple experiments for further lateralization analysis. 

B. DSF-BrainNet 

 
Fig. 2.  Flow of DSF-BrainNet method. (a) Using the sliding window 

technique, the time series is sequentially divided into different time slices, 
(b) Using the SPA method, the node feature information under each time 
slice is constructed synchronously, (c) Using PCC, the constructed edge 
feature information under each time slice. 

 
DSF-BrainNet is the feature graph structure that needs to be 

fed into the GCN model. DSF-BrainNet is topologically 
composed of graph nodes and edge features. To reflect the 
fluctuation of brain activity over time, the graph nodes and edge 
features are organized as time series data, and they maintain a 
time-based synchronization property. They are defined as 
follows: ( , )G V E  denotes the undirected complete graph, 

where 1 2{ , , , }nV v v v   denotes the set of brain region nodes, 

and n  denotes the number of nodes, that is, the number of ROIs. 
Similarly, {( , )}i jE v v denotes the set of edges between nodes 

in the graph, where ,i jv v V . As E contains M  elements, 

there are 2
nM C edges in the graph. Therefore, a function 

: mX V   assigns features to each node and a function 
: mL E    assigns features to each edge. Here, m  denotes the 

length of the node feature vector, that is, the number of time 
slices. Therefore, ( ) , 1,2, ,m

iX v i n    is the feature vector 

of node iv . ( ), 1,2, ,k iX v k m  represents the feature 

component of ( )iX v in the thk time slice.  , m
i jL v v  is the 

edge feature vector between nodes ,i jv v .  , ,k i jL v v i j

represents the feature component of  ,i jL v v in the thk time 

slice. 
For a node iv , the set of its neighboring nodes is defined as 

( )iNe v , that is,  

 ( ) ( , )i j i jNe v v v v E  ,                          (1) 

where jv denotes the neighboring nodes of iv . 

In Fig. 2, the rs-fMRI data of the N  subjects are shown on 
the leftmost side. The brain structure of each subject was 
divided into 90 ROIs using an AAL-90 template. Thus, for each 
subject, the rs-fMRI data correspond to the BOLD signals of 90 
ROIs. In Fig. 2(a), the entire scan time is divided into m  time 
slices using the sliding window technique, and the acquired 
time slices are then input into Fig. 2(b) and Fig. 2(c). 
Subsequently, node and edge features are constructed for the 
BOLD signals within each time slice using the corresponding 
methods. Finally, all node and edge features form a DSF-
BrainNet.  

1) Sliding window technique 
As a classical feature acquisition method, the sliding 

window technique has been widely applied to solve practical 
problems in various fields [37-39]. Therefore, in this study, 
sliding windows were used to construct node and edge features 
to exploit fully the temporal information in the rs-fMRI data. 
Taking the rs-fMRI brain data of a subject as an example, a 
reasonable window width W and sliding step s  were chosen 
for a time series of length K . The entire time series was 
divided into m  time slices by shifting the sliding window over 
the time series K  with a given sliding step s . The starting 
point of each time slice was [0, ]t K W   and the ending 

point was t t W   . It should be emphasized that t  can only 
be an integer. Therefore, the total number of time slices m  
could calculated using 

1
K W

m
s

    
,                                 (2) 

where     denotes the ceiling function. 
2) Calculation of node features using SPA method 
Because rs-fMRI is a time series consisting of multiple 

discrete signal points, this study extended the piecewise 
aggregation approximation method by applying a continuous 
time series to the rs-fMRI discrete time series and proposed the 
SPA method. After data reduction, the rs-fMRI data were 
organized into graph-node features. 

Specifically, taking the rs-fMRI signal of any brain region in 
a subject, the specific mathematical procedure of SPA can be 
expressed as follows. In node iv , the signal values 

iv WBOLD  obtained in each time slice are averaged to obtain

1

1
i i

W
v v

i
i

BOLD = BOLD
W 
 , where iv

iBOLD  denotes the thi  

component of ivBOLD . In total, m  BOLD signals are 
generated for each brain region in m  time slices, and nodal 
feature vectors are obtained by connecting them in time order. 

3) Calculation of edge features using PCC 
In this study, a sliding window was used to construct dFC. 

Considering nodes iv and jv as an example, the PCC was used to 

calculate the edge feature components  ,k i jL v v of iv and jv

under the thk time slice. Subsequently, the correlation 
coefficients under all the time slices were arranged to form the 

edge feature vector  ,i jL v v . Specifically, the component

 ,k i jL v v , i.e., the correlation coefficient [ ]
i jv vr k  ( 1 1)r   , 
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was calculated for the thk  time slice, as shown in Eq. (3): 

2 2

[ ] ( )( )

( ) ( )

j ji i

i j

j ji i

t v vv v
v v g gg t

t t v vv v
g gg t g t

r k BOLD BOLD BOLD BOLD

BOLD BOLD BOLD BOLD





 

 

  

 



 
, (3) 

where iv
gBOLD and jv

gBOLD represent the signal values of iv and

jv , respectively at the time point g . ivBOLD and jvBOLD

represent the corresponding mean signal value in the current 
time slice. Using the sliding window technique, a total of m

correlation coefficients are generated under m time slices. 

Subsequently, Min–Max Normalization is employed to scale 
the PCC values within the range of 0 to 1. The above m  PCCs 

are used to construct  ,i jL v v . The specific forms are given by 

Eq. (4): 

   , [1], [2], , [ ]
i j i j i j

T
m

i j v v v v v vL v v r r r m                (4) 

C. TemporalConv 

TemporalConv ensures that the temporal dynamic structure 
of features is not destroyed during convolution. Most graph 
convolution methods cannot handle multi-dimensional edge 
feature vectors. Those that can handle them mostly make use of 
fully connected operation, i.e., transforming the dimensionality 
of the edge feature vectors to match the node dimensionality 
through a linear layer (multiple linear layers form an MLP in 
ECConv), such as in GATConv [40] and UniMPConv [41]. 
Because the fully connected approach for DSF-BrainNet 
destroys the temporal synchronization between features, this 
study improved on the traditional edge convolution approach 
represented by ECConv by proposing TemporalConv. 

 
Fig. 3. Comparison of ECConv and TemporalConv convolution 

processes: (a) Schematic diagram of DSF-BrainNet. (b) Convolution 
process of applying ECConv to DSF-BrainNet. (c) Convolution process 
of applying TemporalConv to DSF-BrainNet.  

 
In Fig. 3(a), the green gradient bars represent the node feature 

vectors and the purple gradient blocks represent the edge 
feature vectors, Fig. 3(b) shows the use of the ECConv method 
for the DSF-BrainNet constructed in this study, where   
represents matrix multiplication;   represents element-wise 
addition; Assuming the total number of time slices is 3, then 

1 2 3, ,k k k  represents different time slices or pathways of the 

feature vectors, and it is assumed that max{0,1, , }l l   is 

the layer index in a feed-forward neural network. Specifically, 
for the target node feature 1( )l m

iX v   to be convolved, 

ECConv uses an MLP to transform the adjacent edge feature 

 , m
i jL v v   into the matrix m m . Thereafter matrix 

multiplication is performed between the adjusted matrix and the 
corresponding adjacent node feature vectors 1( )l

jX v . Finally, 

the result is added element-wise to the self-connected target 
node 1( )l

iX v  to obtain the convolved target node ( )l
iX v . 

However, the fully connected operation in MLP and self-
connection destroy the synchronous timing relationship of 
features; therefore, the ECConv method is not suitable for the 
data organization form of this study. Fig. 3(c) represents the 
application of TemporalConv to the DSF-BrainNet constructed 
in this study, where   represents the element-wise product. 
Specifically, in this convolution process, each graph node in 
each time slice forms an independent convolution path with its 
neighboring nodes and edges to ensure that the features of the 
convolved graph nodes remain in temporal order. Further, 
unlike ECConv where all edge vectors share a single learnable 
weight in the MLP, TemporalConv sets a unique adaptive 
weight for each edge feature component in each time slice to 
facilitate the importance of all edge feature components in all 
time slices. This information transfer process is bidirectional as 
the nodes in the graph are neighbors of each other. The 
independent convolution process for each time slice is 
represented by the gray dashed line in Fig. 3. In summary, 
TemporalConv preserves the temporal synchronization of 
features better than ECConv in the convolution process.  

As in the notation presented in Section III.B, there exists 

function relation : ldlX V   to assign features to each graph 

node, and  function relation : ldlL E    to assign features to 
each edge, where ld  is the feature dimension of the nodes and 

edge feature vectors of the thl  layer of the neural network. 

Simultaneously, let  1 2 ldk k ,k ...,k  be the independent 

convolution pathway of each time slice in TemporalConv. It 
should be emphasized that the feature dimension of any node 
and edge in each time slice is one. Therefore, taking the thk  
pathway in a time slice as an example, its convolved node 
feature value ( )l

k iX v  is the sum of two parts. The first part is 
1( )l

k iX v  under the influence of the adaptive weight parameter 
k
i , and learnable bias parameter k

ib , and the second part is the 

sum of all adjacent edge feature values 1( )l
k j iL v ,v  of the node 

and the corresponding adjacent node feature values 1( )l
k jX v  

under the influence of the adaptive weight ,i j

k
v v , where 

( )j iv Ne v . Therefore, the TemporalConv calculation process 

under the k  pathway is as follows: 
1

1 1

( )

( ) ( )

( , ) ( )
j ij i

l k l k
k i i k i i

k l l
v ,v k j i k jv Ne v

X  X b

L v v X v

v v





 


 


            (5) 

In addition, for a graph structure constructed without edge 
features, Eq. (5) can be simplified as follows: 

1 1

( )
( ) ( ) ( )

j ij i

l k l k k l
k i i k i i v ,v k jv Ne v

X  X b X vv v  


          (6) 
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D. CategoryPool 

To improve further the classification accuracy of SZ patients 
and analyze hemispheric lateralization abnormalities, we 
proposed CategoryPool. As shown in Fig. 4, this method 
divides the brain nodes into two categories: left and right 
hemispheres. After determining the total number of nodes   to 

be retained, the proportion of brain regions to be retained in 
these two categories ( A , B ) was set to investigate the effect 

of different retention ratios on the classification accuracy of SZ 
patients. Additionally, various node scoring strategies can be 
nested in CategoryPool pooling to filter the reserved nodes; this 
method mainly adopts the node scoring strategy of Top-k [42] 
for experimental exploration.  

 
Fig. 4.  CategoryPool Process Diagram. 
 

In Fig. 4, the set of brain nodes lV  of the thl  layer neural 
network is firstly divided into two categories: left hemisphere 

l
AV  and right hemisphere l

BV . Secondly, intra-class pooling of 

nodes within the two classes using propensity parameters A ,

B  respectively, is performed. In particular, the nodes in l
AV  

and l
BV  are firstly scored and ranked adaptively and then the top

A   and B   brain regions in l
AV  and l

BV  are extracted to 

form node sets 1l
AV   and 1l

BV   in the 1thl   layer, respectively. 

Finally, the pooled   nodes are regrouped back into the GCN 

for output. Notably, A B      .  

Taking the brain graph of a subject as an example, 

1 2{ , , , }l
nV v v v   denotes the set of ROIs and n  denotes the 

number of ROIs. Then, all ROIs were divided into two 
categories: AV  and BV  in the left and right hemispheres, 

according to the AAL template, which can be denoted as 

                
1 2

1 2

[ ]

[ ]

A

B

l A A A
A n

l B B B
B n

V v ,v , ,v

V v ,v , ,v








,              (7) 

where A and B indicate the left and right hemisphere nodes, 
respectively. An  and Bn  denote the numbers of nodes in l

AV  

and l
BV , respectively, and A Bn n n  . Here, a propensity 

parameter i  is defined, where 0 1,i i A or B   . Then, 

A   and B   are the numbers of brain regions to be reserved 

for the left and right hemisphere nodes, respectively.  
Finally, we feed l

AV  and l
BV  into separate Top-k pooling 

kernels. In the Top-kPool, adaptive scores are computed for all 
nodes (with varying computation methods for different graph 
pooling kernels), followed by ranking based on these scores, 

and selecting the top A   and B   nodes for retention. The 

node score calculation formula is as follows: 
( )

( )
l

i
i

2

X
scor

v
e

p
v

p


 ,              (8) 

where 1( ) ldl
iX v  is obtained from the node features after 

message passing by the convolution module; 1ldp  denotes 

the learnable projection vector;   denotes matrix 
multiplication; and 

2
 denotes the Euclidean distance ( 2L  

norm). Further, we sort the raw values of the node scores 
calculated using Eq. (8). And the output of CategoryPool is 
obtained by concatenating the results of the two pools.  

Moreover, an optimal network can be derived for each cross-
validation iteration. By aggregating the adaptive scores of each 
brain region within these networks, the ultimate ranking of 
brain region importance can be determined. 

IV. EXPERIMENTS AND RESULTS 

To evaluate the performance of the proposed Temporal-
BCGCN classification model, and to discuss the hemispheric 
lateralization abnormalities in SZ patients, this section is 
divided into three parts: 1) experimental implementation and 
setting, 2) comparison experiment, and 3) ablation experiment. 
To verify the robustness of the models, the Temporal-BCGCN 
and comparison models were cross-validated on two cohorts 10 
times with five folds. Four-fold data were used for training; 
one-fold for testing, and six evaluation metrics to assess the 
performance of the model: accuracy (ACC), sensitivity (SEN), 
specificity (SPE), F1-Score, area under the receiver operating 
characteristic curve (AUROC), and area under the precision 
recall curve (AUPRC). 

A. Experimental Implementation and Setting 

Temporal-BCGCN was implemented using the PyTorch 
geometry and trained on an NVIDIA GeForce RTX 3080 Ti 
GPU. In this study, the Adam optimizer [43] and Binary cross 
entropy loss were used. The initial learning rate was set to 0.001, 
and the epoch number to 500. The window width W and sliding 
step s  were set to divide the time series into m  time slices, and 
then the node features and edge feature vectors were calculated 
for each time slice using the SPA and PCC methods, 
respectively. The final DSF-BrainNet comprised a set of graph 
nodes V and a set of edge features L .  

In this study, the DSF-BrainNet was fed into a GCN classifier. 
The classifier primarily consisted of two convolutional layers 
and one pooling layer. The feature dimension of the 
convolutional layer was 0 1d d m  . The number of nodes 
retained in the pooling layer was  . The proportion of 

preserved brain regions in the left and right hemispheres was 

A and B . We designed an MLP with three layers (10 m ,

20 1m  , and two neurons per layer) that took the flattened 
graph as the input and predicted SZ versus HC.  

Meanwhile, as suggested by Li et al. [44], Hancox-Li et al. 
[45], and Adebayo et al. [46], meaningful explanations are 
more likely to come from models with high classification 
accuracies. Therefore, we analyzed the experimental results 
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with better hyper-parameter configurations to explore 
hemispheric lateralization better.  

Furthermore, to achieve optimal results, it is essential to 
debug W , s , A , and B . For W , we conducted tests and 

collected model outcomes for all settings in intervals of 10, 
spanning from 15 to 135. Additionally, in line with the 
configurations mentioned in Savva et al. [47], we set s  to either 
5 or 10. For A and B , we conducted tests and collected model 

outcomes for all settings in intervals of 0.1, spanning from 0 to 
1. After debugging, we set 10  to achieve an optimal 

accuracy of 83.62% on the COBRE dataset for 45W  , 5s  , 
and 0.9 0.1A B  （ ）and achieved an optimal accuracy of 

89.71% on the UCLA dataset for 95W  , 10s  , and 
0.7 0.3A B  （ ）. We discussed the effects of W and s  on 

the model in Section IV.C.2 and showed the results of the 
ablation of CategoryPool in Section IV.C.3.  

B. Model Comparison  

1) Comparison with the baseline model:  
In this study, the baseline models based on sFC and dFC were 

used separately for comparison. There are five main types of 
baseline models. 

a) Traditional machine learning (ML) algorithms for sFC: 
Principal component analysis (PCA) + support vector machine 
(SVM). 

b) Traditional DL algorithms for sFC: Convolutional neural 
networks (CNN) 

c) Advanced static brain network DL analysis method for the 
sFC: BrainGNN [44] 

d) Advanced DL algorithms for dFC: GAT, UniMP 
e) New dynamic brain network DL analysis methods for the 

dFC: HFCN [48] and CRNN [21]. 
Among the baseline models, including PCA + SVM, CNN, 

and BrainGNN, sFC was used. Specifically, sFC comprises the 
PCC values between the BOLD signals of all pairs of the 90 
brain regions for each subject. For PCA + SVM and CNN, these 
sFC values form symmetric matrices representing each subject, 
serving as input data for the models. For BrainGNN, the feature 
vectors for each column of the symmetric matrix corresponded 
to the feature vectors of different nodes within the graph. The 
kernel function of the SVM classifier was a polynomial kernel 
function (linear) and PCA (cumulative percentage of variance 
= 0.9). CNN consisted of three composite convolutional layers 
and one fully connected classification layer. Each composite 
convolutional layer consisted of a convolutional and maximum 
pooling layer, and the size of the convolution kernel was set to 
3×3. The model architecture of BrainGNN followed the setup 
described in the original paper. 

The dFC was employed within the baseline models, 
including GAT, UniMP, HFCN, and CRNN. Specifically, we 
conducted a comprehensive exploration of the hyperparameters 
W and s for dFC, following an approach similar to that used in 
our model. For GAT and UniMP, the optimal hyperparameter 
settings for W  and s  were aligned with those of Temporal-
BCGCN. For HFCN, the best hyperparameters for the COBRE 
and UCLA datasets were 55W   when 5s   and 85W 
when 5s  , respectively. For CRNN, the optimal 

hyperparameters for the COBRE and UCLA datasets were 
determined as 45W   when 10s   and 75W  when 5s  , 
respectively. The GAT model consisted of two GATConv 
layers, one Top-kPool, and one fully connected classification 
layer. The output size of the fully connected classification layer 
was two. The UniMP model consisted of two UniMPConv 
layers, one Top-kPool layer, and one fully connected 
classification layer. The output size of the fully connected 
classification layer was two. The model architecture of HFCN, 
and CRNN followed the setup of the original paper.  

As shown in Table I, the Temporal-BCGCN model slightly 
outperformed the baseline methods on the COBRE dataset and 
significantly outperformed the baseline methods on the UCLA 
dataset under a one-tailed two-sample t-test of 0.05p  . 

Specifically, the traditional ML algorithm PCA + SVM and the 
traditional DL algorithm CNN exhibited the worst results. The 
GAT, UniMP, HFCN, and CRNN models using dFC features 
performed slightly worse than BrainGNN using sFC features, 
whereas the temporal-BCGCN model proposed in this study 
outperformed BrainGNN. Therefore, although dFC contains 
more feature information than sFC, the performance of the 
model using dFC can be better than that of the advanced sFC 
model only if a suitable analysis framework is adopted. For 
example, DSF-BrainNet was proposed to build a topology for 
brain networks with synchronous temporal changes. 
TemporalConv was then proposed to maintain the synchronous 
time-varying features of the brain network during convolutional 
pooling. Maybe these reasons are why the Temporal-BCGCN 
model outperformed the other baseline models on both datasets. 
In conclusion, the proposed method is a superior tool for 
dynamic brain network analysis compared to other brain 
network analysis methods.  

Moreover, on the COBRE dataset, our model achieved an 
AUROC of 78.87% and AUPRC of 76.44%. On the UCLA 
dataset, our model attained an AUROC of 86.14% and AUPRC 
of 85.78%. While our model's AUROC and AUPRC 
outperformed those of other baseline models, they both showed 
a decrease compared to ACC. This might be attributed to 
various factors, including the dataset size and quality. 
Consequently, in our future endeavors, we intend to perform 
experiments using more extensive and higher quality datasets.   

2) Comparison with state-of-the-art methods 
This study also compared the proposed model with the 

current state-of-the-art methods for SZ classification, as shown 
in Table II. In both datasets, Temporal-BCGCN exhibits better 
performance than the other state-of-the-art methods. The 
proposed model improves the ACC by at least 1.20% on the 
COBRE dataset and 6.22% on the UCLA dataset, significantly 
outperforming the other methods. These results demonstrate the 
rationality of the Temporal-BCGCN model and its superior 
representative learning capability. 

C. Ablation Experiment 

In this section, we report on the following ablation 
experiments to demonstrate the importance of the three key 
modules SPA, TemporalConv and CategoryPool. 

1) Importance of SPA algorithm in DSF-BrainNet 
In this study, the node features in DSF-BrainNet were 

replaced by the raw rs-fMRI sequences without reduction, and 
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TABLE I 
COMPARISON OF THE CLASSIFICATION PERFORMANCE WITH THOSE OF DIFFERENT BASELINE MODELS 

 
TABLE II 

COMPARISON WITH STATE-OF-THE-ART METHODS 

Methods Datasets Modality 
HC/SZ Classification 

ACC (%) SEN (%) SPE (%) 
Zou et al. (2020) [49] COBRE, NMorphCH rs-fMRI 80.49 83.72 76.92 

Ghosal et al. (2021) [50] 
LIBD 

fMRI, Genetic data 
58.00 60.00 56.00 

BARI 73.00 66.00 83.00 
Shi et al. (2021) [51] COBRE sMRI, fMRI 83.49 68.69 93.75 
Cui et al. (2021) [52] Clinical sMRI 68.00 60.00 61.00 
Wang et al. (2022) [9] COBRE sMRI, rs-fMRI 82.42 88.57 75.00 
Sun et al. (2022) [53] Clinical sMRI 75.00 80.65 69.70 

Proposed Method 
COBRE 

rs-fMRI 
83.62 83.21 84.07 

UCLA 89.71 89.92 89.56 
 

TABLE III 
COMPARISON OF TEMPORALCONV WITH VARIOUS GRAPH CONVOLUTION STRATEGIES 

 
TABLE IV 

COMPARISON OF VARIOUS POOLING STRATEGIES BASED ON CATEGORYPOOL 

Dataset COBRE (mean (std), %) UCLA (mean (std), %) 

Classifiers Type ACC SEN SPE 
F1-

Score 
AU- 
ROC 

AU- 
PRC 

ACC SEN SPE 
F1-

Score 
AU- 
ROC 

AU- 
PRC 

PCA+SVM sFC 78.27 77.84 79.19 76.04 66.93 62.24 80.56 82.42 78.28 80.26 74.19 73.31 
(6.26) (12.83) (13.58) (9.69) (9.87) (10.45) (3.58) (13.31) (14.34) (9.64) (10.76) (11.37) 

CNN sFC 77.89 79.36 77.24 74.54 65.57 63.01 79.34 76.07 81.15 75.56 72.27 72.65 
(11.43) (10.84) (11.91) (7.18) (9.38) (10.55) (5.71) (8.70) (14.25) (8.67) (9.56) (10.85) 

BrainGNN sFC 81.28 83.45 79.10 79.86 75.19 72.26 84.93 86.53 82.46 83.38 80.43 80.29 
(8.57) (9.06) (8.65) (6.14) (8.46) (7.97) (6.69) (8.39) (8.86) (6.61) (6.96) (7.51) 

GAT dFC 80.82 81.55 81.86 78.38 72.84 69.46 80.97 83.84 79.98 80.58 74.82 74.44 
(6.46) (10.83) (10.37) (8.49) (8.72) (7.03) (5.74) (8.58) (11.82) (8.47) (8.47) (9.39) 

UniMP dFC 78.11 79.23 81.46 76.45 70.25 68.99 82.45 84.42 82.84 82.72 75.01 75.73 
(7.24) (13.68) (12.79) (10.74) (9.35) (9.47) (6.25) (9.39) (11.75) (6.82) (8.42) (8.95) 

HFCN dFC 80.83 77.64 83.72 77.84 70.44 68.34 82.84 79.39 85.31 79.11 75.15 74.07 
(6.86) (11.26) (9.43) (8.16) (8.21) (8.46) (8.76) (9.92) (10.83) (9.44) (9.63) (10.27) 

CRNN dFC 79.29 77.31 81.46 78.13 68.91 67.62 82.67 83.08 80.19 82.31 77.92 76.36 
(5.35) (9.55) (11.36) (8.03) (7.26) (7.48) (7.58) (9.85) (10.12) (8.18) (8.31) (9.09) 

Proposed 
Method 

dFC 83.62 83.21 84.07 80.53 78.87 76.44 89.71 89.92 89.56 89.35 86.14 85.78 
(4.27) (7.32) (8.95) (4.71) (5.86) (6.45) (4.50) (8.51) (7.27) (5.39) (6.47) (6.95) 

Dataset COBRE (mean (std), %) UCLA (mean (std), %) 

Conv ACC SEN SPE 
F1-

Score 
AU- 
ROC 

AU- 
PRC 

ACC SEN SPE 
F1-

Score 
AU- 
ROC 

AU- 
PRC 

ECConv 75.24 70.08 80.86 69.80 66.43 65.70 82.86 81.88 81.22 80.07 79.85 79.03 
(5.36) (16.37) (11.87) (8.13) (8.73) (10.02) (6.40) (10.90) (9.74) (7.11) (7.96) (8.24) 

GATConv 81.43 82.19 82.58 78.97 72.01 69.59 81.72 84.76 80.65 81.79 78.62 77.58 
(7.81) (15.21) (10.49) (9.42) (7.19) (8.38) (4.26) (9.69) (12.92) (4.00) (8.47) (9.39) 

UniMPConv 78.67 75.82 86.45 73.36 71.86 70.25 83.71 85.55 83.61 83.29 81.26 80.80 
(5.86) (14.39) (11.16) (11.49) (9.72) (9.06) (5.27) (10.88) (10.30) (5.68) (7.03) (7.61) 

TemporalConv 
(ours) 

83.62 83.21 84.07 80.53 78.87 76.44 89.71 89.92 89.56 89.35 86.14 85.78 
(4.27) (7.32) (8.95) (4.71) (5.86) (6.45) (4.50) (8.51) (7.27) (5.39) (6.47) (6.95) 

Dataset COBRE (mean (std), %) UCLA (mean (std), %) 

Pooling ACC SEN SPE 
F1-

Score 
AU- 
ROC 

AU- 
PRC 

ACC SEN SPE 
F1-

Score 
AU- 
ROC 

AU- 
PRC 

SortPool 79.62 69.59 87.55 73.91 71.36 68.23 81.72 88.75 77.42 81.97 79.90 78.85 
(4.07) (9.47) (6.61) (6.11) (5.91) (5.63) (6.03) (12.09) (12.79) (6.56) (8.03) (7.64) 

CategoryPool 
(Sort) 

80.19 72.89 86.78 75.55 71.84 69.77 89.71 92.85 87.82 89.11 85.42 84.61 
(3.52) (8.75) (7.51) (4.79) (6.74) (7.15) (4.41) (9.64) (9.07) (6.04) (7.82) (7.79) 

SAGPool 79.05 66.02 90.02 72.50 70.91 69.62 83.43 85.36 84.41 82.76 80.93 80.12 
(4.41) (9.60) (6.95) (4.79) (6.85) (6.81) (5.54) (11.84) (12.93) (6.86) (8.43) (9.86) 

CategoryPool 
(SAG) 

84.29 74.75 92.37 79.98 72.95 70.16 86.28 88.50 86.90 85.74 83.56 82.33 
(4.15) (7.23) (9.19) (5.68) (6.38) (7.59) (3.89) (9.03) (11.21) (5.32) (8.27) (7.64) 

Top-kPool 82.48 83.17 83.71 79.45 73.03 72.46 88.14 88.75 89.45 87.36 84.27 84.06 
(3.79) (8.64) (8.20) (5.71) (5.45) (6.40) (5.20) (8.07) (8.34) (5.90) (6.58) (6.30) 

CategoryPool 
(Top-k) 

83.62 83.21 84.07 80.53 78.87 76.44 89.71 89.92 89.56 89.35 86.14 85.78 
(4.27) (7.32) (8.95) (4.71) (5.86) (6.45) (4.50) (8.51) (7.27) (5.39) (6.47) (6.95) 
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the features after reduction using the PCA algorithm. It should 
be noted that both the raw rs-fMRI sequence and the reduction 
features of the SPA or PCA algorithms have temporal 
characteristics. As shown in Fig. 5, Temporal-BCGCN 
achieves the best classification ACC and F1-Score for both 
COBRE and UCLA when the graph node features are 
constructed using the SPA algorithm. The above results indicate 
that the dynamic synchronization feature constructed by DSF-
BrainNet using the SPA algorithm is more conducive to training 
the Temporal-BCGCN model. 

2) Superiority of TemporalConv 
To demonstrate fully the difference in the effectiveness of 

ECConv and TemporalConv, we discuss the ACC of temporal-
BCGCN networks based on ECConv and TemporalConv with 
different window widths W  and sliding step s  for the COBRE 
and UCLA datasets, respectively, as shown in Fig. 6. We also 
present the model results for ECConv, GATConv, UniMPConv, 
and TemporalConv under the optimal hyperparameter 
configuration in Table III.  

 
Fig. 5. SPA ablation comparison test results. rs-fMRI represents the 

graph node features as the original rs-fMRI signal sequence.  

 
Fig. 6. ACC of Temporal-BCGCN models based on ECConv and 

TemporalConv with different window widths W  and step sizes s . 
 
 As shown in Fig. 6, the ACC of the Temporal-BCGCN 

model with TemporalConv is higher than that with ECConv, 
and remains stable at a higher level than that of ECConv for 
different parameter settings. On the one hand, we can see that 
the window width W  affects the model. Specifically, the 
window width governs the time scale on which the analysis is 
performed; ideally, it is long enough to accommodate the 
relatively slow frequencies of the BOLD signal and estimate 
dFC metrics with a sufficient signal-to-noise ratio, yet short 
enough to be sensitive to transient changes in network 
connectivity. However, the appropriate time scale for studying 
connectivity changes is presently an open question, and 
determining the optimal window width across a range of time 
scales is a common approach. On the other hand, the ACC of 
the ECConv-based model decreases as the window width W  
increases, apparently because ECConv convolves node and 
edge features in a fully connected manner, which results in 
imperfect exclusion of redundant information. Specifically, as 
W  increases, more time slices overlap, and more redundant 

information is present in the node and edge vectors. However, 
ECConv feeds all edge vectors into a shared MLP for fully 
connected operation during convolutional message passing, and 
the adaptive parameters of this MLP are simultaneously applied 
to each component of each edge vector under different time 
slices. As the overlap between time slices increases, the 
redundancy of the data corresponding to the adaptive 
parameters increases further, resulting in a rapid decrease in the 
ability of ECConv to exclude redundant information. 
TemporalConv introduces an exclusive adaptive parameter 

,i jv v
  to adjust the current edge vector components 

dynamically, which to a certain extent eliminates the mutual 
interference between time slices and reduces the redundancy of 
information. In summary, TemporalConv can capture the 
implied brain dynamics more stably when excluding 
overlapping information between time slices.  

As shown in Table III, TemporalConv exhibits the best 
overall performance on the COBRE and UCLA datasets under 
the optimal hyperparameter configuration. In particular, 
compared with the other models, all metrics are optimal and 
exceed 80%, except for the SPE of COBRE, which is lower than 
that of the UniMPConv model. 

3) Superiority of CategoryPool 
In this study, CategoryPool was used under the Top-kPool, 

SortPool [54] and SAGPool [55] pooling strategies. As shown 
in Table IV, the average accuracy of the models on the COBRE 
and UCLA datasets improved by 2.32% and 4.14%, 
respectively when each pooling method was nested using 
CategoryPool than when used alone. Simultaneously, the 
standard deviations of the models nested in CategoryPool 
converged, that is, the model quality was more stable. In 
summary, CategoryPool can improve the performance of 
various pooling strategies for specific problems. The reason for 
this improvement may be that, for rs-fMRI data, pooling the left 
and right hemispheres into different categories not only adapts 
to the characteristics of the data, but also captures some key 
features.  

TABLE V  
RELIABILITY EVALUATION BASED ON SRPBS DATASET 

D. Evaluation of model reliability 

In order to better verify the reliability of this research method, 
this study further used the open dataset Strategic Research 

Classifiers ACC SEN SPE 
F1-

Score 
AU- 
ROC 

AU- 
PRC 

PCA+ 
SVM 

81.11 81.66 82.65 81.43 75.97 76.11 
(4.88) (9.77) (10.99) (9.72) (9.68) (9.35) 

CNN 81.02 80.79 81.08 80.82 74.81 73.42 
(5.31) (8.57) (9.54) (8.56) (9.35) (9.64) 

Brain 
GNN 

86.60 84.96 84.48 83.61 80.89 80.74 
(5.36) (7.44) (7.72) (6.77) (6.47) (6.65) 

GAT 82.48 80.35 81.37 80.93 77.64 76.46 
(5.42) (8.31) (9.68) (8.41) (9.15) (9.22) 

UniMP 83.95 85.53 82.43 82.85 78.42 79.18 
(5.01) (9.55) (9.27) (6.68) (8.83) (8.37) 

HFCN 84.69 84.23 85.19 83.53 78.42 78.89 
(7.45) (8.65) (9.52) (9.28) (8.73) (9.15) 

CRNN 84.23 83.81 85.76 83.53 78.84 79.36 
(7.17) (9.68) (9.96) (8.04) (8.18) (7.95) 

Proposed 
Method 

87.10  83.73  91.34  85.00  83.86  82.87  
(4.37) (5.32) (7.25)  (6.50) (6.68) (6.79) 
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Program for Brain Sciences (SRPBS) [56] to conduct 
supplementary tests. Specifically, we selected a total of 200 
subjects from the Kyoto University TimTrio and Kyoto 
University Trio sites in this dataset, including all schizophrenia 
subjects totaling 92, and the first 108 healthy subjects in sample 
number order. Meanwhile, all the data were analyzed using the 
same preprocessing steps (Section II) and model 
implementation details (Section IV.A). In addition, the optimal 
performance of the model was obtained at 105W  , 5s   and 

0.8A  , as shown in Table V. This result is nearly consistent 

with the main experimental conclusions in Section IV.B. 
Overall, our model has relative advantages in terms of 
reliability. 

V. DISCUSSION 

To explore the lateralization abnormalities in the brain and its 
potential as disease biomarkers, CategoryPool was used and the 
brain was divided into two categories: left and right 
hemispheres. By adjusting A  and B , we determined the 

proportion of preserved brain regions in each hemisphere. 
Finally, we discussed and analyzed the retained brain regions. 

A. Existence of hemispheric lateralization 
abnormalities in SZ patients 

To test whether there is abnormal lateralization in the brains 
of SZ patients, we first set the same weight for the left and right 
hemispheres, namely, 0.5 0.5A B  （ ）. Next, during pool 

training, adaptive scores (according to Eq. (8)) were introduced 
to describe the importance of preserving the brain areas. Finally, 
the adaptive scores of the brain regions retained 10 times 5-fold 
cross-validations were accumulated and ranked; the top 10 
brain regions are shown in Table VI, where the number of left 
hemisphere regions is seven in both datasets, significantly 
exceeding the right hemisphere. This finding also suggests that 
pathological changes in the left hemisphere of SZ patients may 
be more favorable for model classification training. In summary, 
there were more group-differentiated lesions in the left 
hemisphere of SZ patients. Moreover, brain regions that 
appeared simultaneously in both datasets were regarded as 
potential disease biomarkers (bold in Table VI), as shown in Fig. 
7. Specifically, under the condition of equal status between the 
left and right hemispheres, the potential disease biomarkers 
identified in this study were located in the default-model 
network (DMN): precuneus (PCUN.R) and superior frontal 
gyrus medial (SFGmed.L), and visual network (VN): superior 
occipital gyrus (SOG.L) and fusiform gyrus (FFG.L). 

B．Analysis of hemispheric lateralization abnormalities in 
SZ patients 

To analyze further the abnormal lateralization of the left 
hemisphere in SZ patients, under the COBRE and UCLA 
datasets, the model achieved the highest accuracy when 

0.9 0.1A B  （ ） and 0.7 0.3A B  （ ） (i.e., when it was 

more inclined to choose left brain features), respectively. The 
importance of the lesions in the brain regions corresponding to 
the above values is listed in Table VII (top 10). Under both 
datasets, the top 10 brain regions were located in the left hemi- 

TABLE VI 

ORDER OF RELATIVE IMPORTANCE OF PATHOLOGICAL TOP10 BRAIN 

REGIONS WHEN A  IS EQUAL TO 0.5 

DMN: default-model network, DAN: dorsal attention network, LN: limbic 
network, SMN: somatosensory network, VAN: ventral attention network, 
VN: visual network, -: not in the cortical network. 

 
Fig. 7.  Potential disease biomarkers under 0.5 0.5A B  （ ） (as 

shown in Table VI, the brain regions that appear in the importance 
sequences of both data sets are regarded as potential disease 
biomarkers). 

TABLE VII 

ORDER OF RELATIVE IMPORTANCE OF TOP10 BRAIN REGIONS UNDER 

OPTIMAL ACCURACY 

DMN: default-model network, DAN: dorsal attention network,LN: limbic 
network, SMN: somatosensory network, VAN: ventral attention network, 
VN: visual network, -: not in the cortical network. 
 

 
Fig. 8.  Potential disease biomarkers with optimal accuracy (as shown 
in Table VII, the brain regions that appear in the important sequences of 
both data sets are regarded as potential disease biomarkers). 

COBRE UCLA 
ROI abbr Brain Network ROI abbr Brain Network 

SFGmed.L DMN SFGmed.L DMN 
PCUN.R DMN ITG.L LN 
LING.R VN PCUN.R DMN 
SOG.L VN CAL.L VN 
HIP.L - FFG.L VN 
STG.L SMN MTG.R DMN 

PreCG.L DAN SFGdor.R DMN 
LING.L VN ACG.L DMN 
FFG.L VN DCG.L VAN 
PCG.R DMN SOG.L VN 

COBRE UCLA 
ROI abbr Brain Network ROI abbr Brain Network 
SOG.L VN LING.L VN 
FFG.L VN SFGmed.L DMN 

SFGmed.L DMN IOG.L VN 
TPOmid.L LN ACG.L DMN 

MOG.L VN PreCG.L DAN 
CAL.L VN CAL.L VN 
CUN.L VN MTG.L DMN 
IOG.L VN ITG.L LN 
STG.L SMN DCG.L VAN 

PreCG.L DAN PoCG.L SMN 
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sphere, which further verified the conclusion drawn in Part A 
of this section. Additionally, brain regions that appeared 
simultaneously in both datasets were regarded as potential 
disease biomarkers (bold in Table VII), as shown in Fig. 8. 
Specifically, the potential disease biomarkers identified in this 
study was located in the VN: inferior occipital gyrus (IOG.L), 
calcarine fissure, and surrounding cortex (CAL.L); and dorsal 
attention network (DAN): precental gyrus (PreCG.L) and DMN 
(SFGmed.L) with the highest accuracy. 

In summary, the results of the present study suggest that the 
left hemisphere of the brain in SZ patients seems to play a more 
critical role in classification prediction, which may suggest 
more severe lesions in the left hemisphere of the brain in SZ 
patients. Both Tables VI and VII show that accurate 
classification of SZ can be achieved based on the functional 
characteristics between the lower-order perceptual networks 
(VN and somatosensory network (SMN)) and the higher-order 
networks (DMN and limbic network (LN)). Indeed, it has been 
demonstrated that SZ involves many brain regions and is 
considered a widespread disconnected brain disease [57-59]. 
Additionally, the presence of functional abnormalities in DMN 
brain regions was shown to be associated with reduced 
interhemispheric sFC in the left intrahemisphere [7]. Xie et al. 
[27] found that the syrinx gyrus in DMN of SZ patients 
exhibited greater rs-fMRI signal variability and that this 
variability tended to be lateralized to the left. 

More importantly, SFGmed.L, located in the DMN network, 
was labeled as an important potential disease biomarker in 
Tables VI and VII. Moreover, studies have identified the 
importance of this brain region in SZ. For example, Zhang et al. 
[28] observed significant hemispheric effects in 10 brain 
regions, including the precentral gyrus and medial part of the 
superior frontal gyrus, as well as the precentral gyrus and 
medial part of the superior frontal gyrus, which showed a left-
leaning predominance in terms of regional efficiency. Pan et al. 
[60] found a significant reduction in connectivity at the whole-
brain level in SZ patients whose working memory capacity was 
positively correlated with the strength of connections in 
SFGmed.L-SFGmed.R and SFGmed.L-Anterior cingulate and 
paracingulate gyri (ACG.R). Furthermore, consistent with the 
sensory gating hypothesis, the present study found significant 
predictive precision in the lower order perceptual system 
(occipital and primary sensorimotor cortex), reflecting 
dysregulation of the primary perceptual system in these two 
datasets [61]. Higher order brain regions, such as the prefrontal 
cortex, also showed good discrimination, which may be related 
to the executive dysfunction of the patients. 

VI. CONCLUSION  

In this study, a powerful and advanced model for dynamic 
brain network analysis, Temporal-BCGCN, was employed for 
classification and hemispheric lateralization analysis of SZ 
patients. The proposed model includes the following: (1) a 
unique dynamic functional brain network module DSF-
BrainNet; (2) a revolutionary convolution method 
TemporalConv; and (3) a novel pooling strategy CategoryPool. 
The proposed model yielded average accuracies of 83.62% and 
89.71% for the COBRE and UCLA datasets, respectively, 
exceeding those of the baseline models and other state-of-the-

art methods. Meanwhile, the average accuracy of the model for 
SRPBS was 87.10%, which further verified the reliability of the 
model. This study showed that the lower order perceptual 
system and higher order network regions in the left hemisphere 
were more severely dysfunctional than those in the right 
hemisphere in SZ. This also confirmed the significance of the 
left medial superior frontal gyrus (SFGmed.L) in SZ. In 
conclusion, Temporal-BCGCN provides a promising means of 
restoring the spatiotemporal characteristics of cerebral 
neurodynamics and identifying the lateralization abnormalities 
of SZ patients. In future, we will develop more targeted DL 
functional modules based on the characteristics of medical 
image data to fully realize the potential of DL methods for 
medical image processing. Additionally, we will extend the use 
of TemporalConv to further explore patterns of abnormal 
activation in each time slice of the brain. 
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